\(1000^2+10003^2+1005^2+1006^2=1001^2+1002^2+1004^2+1004^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\left(a^2-b^2\right)^2+\left(2ab\right)^2\)

\(=a^4-2a^2b^2+b^4+4a^2b^2\)

\(=a^4+2a^2b^2+b^4=\left(a^2+b^2\right)^2\)

b: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)

\(=c^2\left(a^2+b^2\right)+d^2\left(a^2+b^2\right)\)

\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

c: \(\left(ax+b\right)^2+\left(a-bx\right)^2+c^2x^2\)

\(=a^2x^2+b^2+a^2+b^2x^2+c^2x^2\)

\(=a^2\left(x^2+1\right)+b^2\left(x^2+1\right)+c^2x^2\)

\(=\left(x^2+1\right)\left(a^2+b^2\right)+c^2x^2\)

18 tháng 8 2016

a) ( x2 - 2x + 2 )( x- 2 )( x2 + 2x + 2 )( x2 + 2 )

= [ ( x+ 2 )2 - 4x2 ] ( x4 - 4 )

= ( x4 + 4 ) ( x4 - 4 )

= x8 - 16

b) ( a + b + c )2 + ( a + b - c )2 + ( 2a -b )2

= 2 ( a2 + b2 + c2 ) + 2 ( ab + bc + ac ) + 2 ( ab - bc - ac ) + ( 4a2 - 4ab + b2 )

= 2 ( a+ b2 + c2 ) + 4ab - 4ab + 4a2 + b2

= 6a2 + 3b2 + 2c2

c) 1002 - 992 + 982 - 972 + ..... + 22 - 12

= ( 100 - 99 )( 100 + 99 ) + ( 98 - 97 )( 98 + 97 ) + ..... + ( 2 - 1 )( 2 + 1 )

= 199 + 197 + 195 + ..... + 5 + 3

\(\frac{\left(199+3\right)\left(\left(199-3\right)\frac{1}{2}+1\right)}{2}\)

= 9999

d) 3 ( 22 + 1 )( 24 +1 )......( 264 + 1 ) + 1

= ( 22 -1 )( 22 + 1 )(24 + 1 ).....( 264 + 1 ) + 1

= ( 24 -1 )( 24 + 1 )( 28 + 1 )......( 264 + 1 ) +1

= ( 28 -1 )( 28 + 1).....( 264 + 1) +1

............

= ( 264 - 1)( 264 +1 ) + 1

= 2128

10 tháng 5 2017

Ta có:B-A=10012+10022+10042+10072-10002-10032-10052-10062

=(10012-1000)2+(10022-10032)+(10042-10052)+(10072-10062)

=(1001-1000)(1001+1000)+(1002-1003)(1002+1003)+(1004-1005)(1004+1005)+(1007-1006)(1007+1006)

=2001-2005-2009+2013

=0

=>A=B

10 tháng 5 2017

cảm ơn nha !!! thanghoa

24 tháng 7 2017

a) Sửa đề: \(\left(ax+by+cx\right)^2+\left(bx-ay\right)^2+\left(cy-bz\right)^2+\left(az-cx\right)^2\)
= a2x2 + b2y2 + c2x2 + 2axby + 2bycz + 2axcz + b2x2 - 2bxay + a2y2 + c2y2 - 2cybz + b2z2 + a2z2 - 2azcx + c2x2
= a2x2 + b2y2 + c2x2 + b2x2 + a2y2 + c2y2 + b2z2 + a2z2 + c2x2
= a2(x2+y2+z2) + b2(x2+y2+z2) + c2(x2+y2+z2)
= (a2+b2+c2)(x2+y2+z2) (đpcm)

b) Đặt x = b; y = c; z = a, ta có:
\(\left(ay+bz+cx\right)^2+\left(az-by\right)^2+\left(bx-cz\right)^2+\left(cy-ax\right)^2\)
= a2y2 + b2z2 + c2x2 + 2aybz + 2bzcx + 2aycx + a2z2 - 2azby + b2y2 + b2x2 - 2bxcz + c2z2 + c2y2 - 2cyax + a2x2
= a2y2 + b2z2 + c2x2 + a2z2 + b2y2 + b2x2 + c2z2 + c2y2 + a2x2
= (a2+b2+c2)(x2+y2+z2)
Thay b = x, c = y, a = z, ta có:
(a2+b2+c2)(x2+y2+z2) = (a2+b2+c2)2 (đpcm)

25 tháng 7 2017

thanks

31 tháng 3 2018

Nó là bđt bunyakovsky luôn rồi mà bạn,lên google sẽ có cách chứng minh

31 tháng 3 2018

Mk lên tra được câu a thôi

Bn giúp mk câu b đi

27 tháng 5 2017

cố gắng là làm được

27 tháng 5 2017

câu 2:

a(b-c)-b(a+c)+c(a-b)=-2bc

ta có: 

a( b-c ) - b ( a +c )+ c(a-b)

=ab-ac-(ba+bc)+(ca-cb)

=ab-ac-ba-bc+ca-cb

=ab-ba-ac+ca-bc-cb

=0-0-bc-cb

=bc+(-cb)

=-2cb    hay -2bc

b)a(1-b)+a(a^2-1)=a(a^2-b)

Ta có:

a(1-b) + a(a^2-1)

=a-ab+(a^3-a)

=a-ab+a^3-a

=a-a-ab+a^3

=0-ab+a^3

=-ab+a^3

=a(-b +a^2)     hay a(a^2-b)