Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích à ? -.-
a) ax - bx + ab - x2
= ( ax + ab ) - ( x2 + bx )
= a( x + b ) - x( x + b )
= ( x + b )( a - x )
b) x2 - 4xy + 4y2 - 4
= ( x2 - 4xy + 4y2 ) - 4
= ( x - 2y )2 - 22
= ( x - 2y - 2 )( x - 2y + 2 )
c) ( x2 + y2 - 2 )2 - ( 2xy - 2 )2
= [ ( x2 + y2 - 2 ) - ( 2xy - 2 ) ][ ( x2 + y2 - 2 ) + ( 2xy - 2 ) ]
= ( x2 + y2 - 2 - 2xy + 2 )( x2 + y2 - 2 + 2xy - 2 )
= ( x2 - 2xy + y2 )[ ( x2 + 2xy + y2 ) - 4 ]
= ( x - y )2[ ( x + y )2 - 22 ]
= ( x - y )2( x + y - 2 )( x + y + 2 )
d) ab( x2 + y2 ) + ( a2 + b2 ) ( cái này không phân tích được ((: )
\(25x^2-10xy+y^2=\left(5x\right)^2-2.5x.y+y^2=\left(5x-y\right)^2\)
\(\dfrac{4}{9}x^2+\dfrac{20}{3}xy+25y^2=\left(\dfrac{2}{3}x\right)^2+2.\dfrac{2}{3}x.5y+\left(5y\right)^2=\left(\dfrac{2}{3}x+5y\right)^2\)
a) 25x² - 16
= (5x)² - 4²
= (5x - 4)(5x + 4)
b) 16a² - 9b²
= (4a)² - (3b)²
= (4a - 3b)(4a + 3b)
c) 8x³ + 1
= (2x)³ + 1³
= (2x + 1)(4x² - 2x + 1)
d) 125x³ + 27y³
= (5x)³ + (3y)³
= (5x + 3y)(25x² - 15xy + 9y²)
e) 8x³ - 125
= (2x)³ - 5³
= (2x - 5)(4x² + 10x + 25)
g) 27x³ - y³
= (3x)³ - y³
= (3x - y)(9x² + 3xy + y²)
a) \(25x^2-16=\left(5x-4\right)\left(5x+4\right)\)
b) \(16a^2-9b^2=\left(4a-3b\right)\left(4a+3b\right)\)
c) \(8x^3+1=\left(2x+1\right)\left(4x^2-2x+1\right)\)
d) \(125x^3+27y^3=\left(5x+3y\right)\left(25x^2-15xy+9y^2\right)\)
e) \(8x^3-125=\left(2x-5\right)\left(4x^2-10x+25\right)\)
g) \(27x^3-y^3=\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
1. \(x^4-2x^2+1=\left(x^2-1\right)^2\)
2. \(x^2+5x+\dfrac{25}{4}=x^2+2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2=\left(x+\dfrac{5}{2}\right)^2\)
3. \(16x^2-8x+1=\left(4x-1\right)^2\)
4. \(x^2+x-y^2+y=\left(x-y\right)\left(x+y\right)+\left(x+y\right)=\left(x-y+1\right)\left(x+y\right)\)
5. \(\dfrac{1}{4}x^2-\dfrac{4}{9}y^2=\left(\dfrac{1}{2}x-\dfrac{2}{3}y\right)\left(\dfrac{1}{2}x+\dfrac{2}{3}y\right)\)
6. \(a^2-2ab+b^2-x^2=\left(a-b\right)^2-x^2=\left(a-b-x\right)\left(a-b+x\right)\)
7. \(4x^2-20x+25-y^2=\left(2x-5\right)^2-y^2=\left(2x-5-y\right)\left(2x-5+y\right)\)
A = ( 3x )3 + 23 - 27x3 + 6 = 27x3 + 8 - 27x3 + 6 = 14 ( đpcm )
B = x3 + 3x2 + 3x + 1 - ( x3 - 1 ) - 3x2 - 3x = x3 + 1 - x3 + 1 = 2 ( đpcm )
C = 6( x + 2 )( x2 - 2x )( x2 - 2x + 4 ) - 6x3 - 2 ( bạn xem lại đề bài nhé ._. )
D = 2[ ( 3x )3 + 13 ] - 54x3 = 2( 27x3 + 1 ) - 54x3 = 54x3 + 2 - 54x3 = 2 ( đpcm )
Bài 2:
a: Ta có: \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)
\(=\left(x+y\right)^3+2\cdot\left(x+y\right)^2\)
\(=7^3+2\cdot7^2=441\)
1. \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
\(VP=a^2-2ab+b^2+4ab=a^2+2ab+b^2=\left(a+b\right)^2\)
\(\Rightarrow VT=VP\)
2. \(a^4-b^4=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\)
\(VP=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)=\left(a^2-b^2\right)\left(a^2+b^2\right)=a^4+a^2b^2-b^2a^2-b^4=a^4-b^4\)
\(\Rightarrow VT=VP\)
3. \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax-by\right)^2+\left(bx+ay\right)^2\)
\(VT=\left(a^2+b^2\right)\left(x^2+y^2\right)=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)
\(VP=\left(ax-by\right)^2+\left(bx+ay\right)^2=a^2x^2-2axby+b^2y^2+b^2x^2+2bxay+a^2y^2=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)
\(\Rightarrow VT=VP\)