Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(a^2-b^2\right)^2+\left(2ab\right)^2\)
\(=a^4-2a^2b^2+b^4+4a^2b^2\)
\(=a^4+2a^2b^2+b^4=\left(a^2+b^2\right)^2\)
b: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)
\(=c^2\left(a^2+b^2\right)+d^2\left(a^2+b^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
c: \(\left(ax+b\right)^2+\left(a-bx\right)^2+c^2x^2\)
\(=a^2x^2+b^2+a^2+b^2x^2+c^2x^2\)
\(=a^2\left(x^2+1\right)+b^2\left(x^2+1\right)+c^2x^2\)
\(=\left(x^2+1\right)\left(a^2+b^2\right)+c^2x^2\)
a) \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2b-a^2c+c^2a-c^2b+b^2\left(c-a\right)\)
\(=\left(a^2b-c^2b\right)-\left(a^2c-c^2a\right)-b^2\left(a-c\right)\)
\(=b\left(a^2-c^2\right)-ac\left(a-c\right)-b^2\left(a-c\right)\)
\(=b\left(a-c\right)\left(a+c\right)-ac\left(a-c\right)-b^2\left(a-c\right)\)
\(=\left(a-c\right)\left[b\left(a+c\right)-ac-b^2\right]\)
\(=\left(a-c\right)\left(ab+bc-ac-b^2\right)\)
\(=\left(a-c\right)\left[\left(ab-b^2\right)+\left(bc-ac\right)\right]\)
\(=\left(a-c\right)\left[b\left(a-b\right)+c\left(b-a\right)\right]\)
\(=\left(a-c\right)\left[b\left(a-b\right)-c\left(a-b\right)\right]\)
\(=\left(a-c\right)\left(a-b\right)\left(b-c\right)\)
b) \(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)
\(=a^3b-a^3c+c^3a-c^3b+b^3\left(c-a\right)\)
\(=\left(a^3b-c^3b\right)-\left(a^3c-c^3a\right)-b^3\left(a-c\right)\)
\(=b\left(a^3-c^3\right)-ac\left(a^2-c^2\right)-b^3\left(a-c\right)\)
\(=b\left(a-c\right)\left(a^2+ac+c^2\right)-ac\left(a-c\right)\left(a+c\right)-b^3\left(a-c\right)\)
\(=\left(a-c\right)\left[b\left(a^2+ac+c^2\right)-ac\left(a+c\right)-b^3\right]\)
\(=\left(a-c\right)\left(ba^2+abc+bc^2-a^2c-ac^2-b^3\right)\)
\(=\left(a-c\right)\left[\left(ba^2-a^2c\right)+\left(abc-ac^2\right)+\left(bc^2-b^3\right)\right]\)
\(=\left(a-c\right)\left[a^2\left(b-c\right)+ac\left(b-c\right)+b\left(c^2-b^2\right)\right]\)
\(=\left(a-c\right)\left[a^2\left(b-c\right)+ac\left(b-c\right)-b\left(b^2-c^2\right)\right]\)
\(=\left(a-c\right)\left[a^2\left(b-c\right)+ac\left(b-c\right)-b\left(b-c\right)\left(b+c\right)\right]\)
\(=\left(a-c\right)\left(b-c\right)\left[a^2+ac-b\left(b+c\right)\right]\)
\(=\left(a-c\right)\left(b-c\right)\left(a^2+ac-b^2-bc\right)\)
\(=\left(a-c\right)\left(b-c\right)\left[\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\right]\)
\(=\left(a-c\right)\left(b-c\right)\left(a-b\right)\left(a+b+c\right)\)
a) \(VT=\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3-a^3-b^3-c^3\)
\(=a^3+b^3+c^3+3ab\left(a+b\right)+3\left(a+b\right)\left(ac+bc+c^2\right)-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)
b) \(VT=a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\)
câu 2:
a(b-c)-b(a+c)+c(a-b)=-2bc
ta có:
a( b-c ) - b ( a +c )+ c(a-b)
=ab-ac-(ba+bc)+(ca-cb)
=ab-ac-ba-bc+ca-cb
=ab-ba-ac+ca-bc-cb
=0-0-bc-cb
=bc+(-cb)
=-2cb hay -2bc
b)a(1-b)+a(a^2-1)=a(a^2-b)
Ta có:
a(1-b) + a(a^2-1)
=a-ab+(a^3-a)
=a-ab+a^3-a
=a-a-ab+a^3
=0-ab+a^3
=-ab+a^3
=a(-b +a^2) hay a(a^2-b)
a ) \(VT=\left(2x+3\right)\left(4x^2+9\right)\left(2x-3\right)\)
\(=\left[\left(2x+3\right)\left(2x-3\right)\right]\left(4x^2+9\right)\)
\(=\left(4x^2-9\right)\left(4x^2+9\right)\)
\(=16x^4-81=VP\left(đpcm\right)\)
b ) \(VT=\left(a+b\right)^2+2\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\)
\(=\left(a+b+a-b\right)^2\)
\(=\left(2a\right)^2=4a^2=VP\left(đpcm\right)\)
a) Ta có: \(\left(a+b+c\right)^2+\left(b+c-a\right)^2+\left(a+c-b\right)^2+\left(a+b-c\right)^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2+2bc-2ab-2ac+a^2+b^2+c^2-2ab-2bc+2ac+a^2+b^2+c^2+2ab-2bc-2ca\)
\(=a^2+b^2+c^2+a^2+b^2+c^2+a^2+b^2+c^2+a^2+b^2+c^2\)
\(=4a^2+4b^2+4c^2\)
\(=4\left(a^2+b^2+c^2\right)\)
b) Đặt x = b + c - a
y = c + a - b
z = a + b - c
\(\Rightarrow\left\{{}\begin{matrix}c=\dfrac{x+y}{2}\\a=\dfrac{y+z}{2}\\b=\dfrac{x+z}{2}\end{matrix}\right.\)
\(\Rightarrow a+b+c=x+y+z\)
Ta có: \(\left(a+b+c\right)^3-x^3-y^3-z^3\)
\(=\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+3\left(x+y\right)z+3\left(x+y\right)z^2+z^3-x^3-y^3-z^2\)
\(=3x^2y+3xy^2+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)
\(=3xy\left(x+y\right)+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)
\(=3\left(x+y\right)\left[xy+\left(x+y\right)z+z^2\right]\)
\(=3\left(x+y\right)\left[z^2+xy+xz+yz\right]\)
\(=3\left(x+y\right)\left[z\left(x+y\right)+y\left(x+y\right)\right]\)
\(=3\left(x+y\right)\left(x+z\right)\left(y+z\right)\)
\(=3.2a.2b.2c\)
\(=24abc\) (đpcm)