\(A=x^2-4x+y^2+2y+12\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2018

A = ( x2 - 4x + 4 ) + ( y2 + 2y + 1 ) + 7 

   = ( x - 2 )2  + ( y + 1 )2 + 7 luôn dương nhé ( vì hai bình phương cộng thêm 7  lớn hơn 0 )

24 tháng 8 2018

\(A=x^2-4x+y^2+2y+12=x^2-4x+4+y^2+2y+1+7\)

   \(=\left(x-2\right)^2+\left(y+1\right)^2+7\ge7\)với mọi x,y

Do đó A luôn dương với mọi x,y

                            

17 tháng 10 2020

\(hcmuop\underrightarrow{jjjjjjjjj}me\)

2 tháng 7 2021

bạn cm các biểu thức trong căn > 0 ∀ x là xong =)) 

21 tháng 11 2017

a, Áp dụng bđt cosi có : x^2+y^2 >= 2xy

<=> (x+y)^2 >= 4xy

<=> xy <= (x+y)^2/4 = 2^2/4 = 1

=> ĐPCM

Dấu "=" xảy ra <=> x=y=1

k mk nha

21 tháng 11 2017

a, Áp dụng bđt cosi có : x^2+y^2 >= 2xy

<=> (x+y)^2 >= 4xy

<=> xy <= (x+y)^2/4 = 2^2/4 = 1

=> ĐPCM

Dấu "=" xảy ra <=> x=y=1

k mk nha

6 tháng 8 2016

a)

2x2+2x+1

=(x+1)2+x2

(x+1)luôn lớn hơn hoặc =0 

dấu "=" xảy ra khi x=-1. mà với x=-1 thì x2=1 => biểu thức trên =1

x2 luôn lớn hơn hoặc =0

dấu "=" xảy ra khi x=0=> (x+1)2=1 => biểu thức trên =1

vậy biểu thức này có giá trị dương ( >0 )  với mọi giá trị của biến

b)9x2-6x+2

=(3x+1)+1

ta có: (3x+1)2 luôn lớ hơn hoặc =0

=> (3x+1)2+1 luôn lớn hơn hoặc =1

=> (3x+1)^2+1 luôn dương với mọi giá trị của biến

 

6 tháng 8 2016

a) \(2x^2+2x+1=2\left(x^2+x+\frac{1}{2}\right)=2\left[\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\right]=\frac{1}{2}+2\left(x+\frac{1}{2}\right)^2\)

Vì: \(2\left(x+\frac{1}{2}\right)^2\ge0\)  với mọi x

=> \(\frac{1}{2}+2\left(x+\frac{1}{2}\right)^2>0\)

Vậy biểu thức trên luôn luôn dương với mọi giá trị của biến

b) \(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1\)

Vì: \(\left(3x-1\right)^2\ge0\)  với mọi giá trị của x

=> \(\left(3x-1\right)^2+1>0\)

vậy biểu thức trên luôn luôn dương với mọi giá trị của x

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Bài 1:
\(P=\frac{2x^2+y^2-2xy}{xy}=\frac{2x}{y}+\frac{y}{x}-2=\frac{7x}{4y}+(\frac{x}{4y}+\frac{y}{x})-2\)

Áp dụng BĐT Cô-si cho các số dương:

\(\frac{x}{4y}+\frac{y}{x}\geq 2\sqrt{\frac{x}{4y}.\frac{y}{x}}=1\)

\(\frac{7x}{4y}\geq \frac{7.2y}{4y}=\frac{7}{2}\) do $x\geq 2y$

Do đó: \(P\geq \frac{7}{2}+1-2=\frac{5}{2}\)

Vậy $P_{\min}=\frac{5}{2}$ khi $x=2y$

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Bài 2:
\(P=\frac{x^2+y^2}{x^2y^2}+\frac{x^2y^2}{x^2+y^2}=\frac{x^2+y^2}{\frac{1}{4}}+\frac{1}{4(x^2+y^2)}=4(x^2+y^2)+\frac{1}{4(x^2+y^2)}\)

Áp dụng BĐT Cô-si :

\(\frac{x^2+y^2}{4}+\frac{1}{4(x^2+y^2)}\geq 2\sqrt{\frac{x^2+y^2}{4}.\frac{1}{4(x^2+y^2)}}=\frac{1}{2}(1)\)

\(x^2+y^2\geq 2\sqrt{x^2y^2}=2|xy|=2.\frac{1}{2}=1\)

\(\Rightarrow \frac{15(x^2+y^2)}{4}\geq \frac{15}{4}(2)\)

Lấy \((1)+(2)\Rightarrow P\geq \frac{15}{4}+\frac{1}{2}=\frac{17}{4}\)

Vậy \(P_{\min}=\frac{17}{4}\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)

NV
28 tháng 9 2019

Bài 1:

\(\frac{2}{x^2+2y^2+3}=\frac{2}{\left(x^2+y^2\right)+\left(y^2+1\right)+2}\le\frac{2}{2xy+2y+2}=\frac{1}{xy+y+1}\)

Bài 2:

\(A=\frac{4}{4x^2+9y^2}+\frac{4}{12xy}+\frac{52}{2x.3y}\ge\frac{16}{4x^2+9y^2+12xy}+\frac{52.4}{\left(2x+3y\right)^2}\)

\(A\ge\frac{16}{\left(2x+3y\right)^2}+\frac{208}{\left(2x+3y\right)^2}=\frac{224}{\left(2x+3y\right)^2}\ge\frac{224}{4}=56\)

\(A_{min}=56\) khi \(\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)