Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=-x^2+2x-3=-\left(x^2-2x+1-1\right)-3=-\left(x-1\right)^2-2\le-2< 0\forall x\)
Vậy ta có đpcm
b, \(C=-x^2+4x-7=-\left(x^2-4x+4-4\right)-7=-\left(x-2\right)^2-3\le-3< 0\forall x\)
Vậy ta có đpcm
c, \(D=-2x^2-6x-5=-2\left(x^2+\frac{2.3}{2}x+\frac{9}{4}-\frac{9}{4}\right)-5\)
\(=-2\left(x+\frac{3}{2}\right)^2-\frac{1}{2}\le-\frac{1}{2}< 0\forall x\)
Vậy ta có đpcm
d, \(E=-3x^2+4x-4=-3\left(x^2-\frac{4}{3}x+\frac{4}{9}-\frac{4}{9}\right)-4\)
\(=-3\left(x-\frac{2}{3}\right)^2-\frac{8}{3}\le-\frac{8}{3}< 0\forall x\)
Vậy ta có đpcm
e, tự làm nhé
1/
\(M=3x^2-4x+3=3\left(x^2-\frac{4}{3}x+1\right)=3\left(x^2-2x\cdot\frac{2}{3}+\frac{4}{9}\right)+\frac{5}{3}=3\left(x-\frac{2}{3}\right)^2+\frac{5}{3}\ge\frac{5}{3}>0\)
\(N=5x^2-10x+2018=5\left(x^2-2x+1\right)+2013=5\left(x-1\right)^2+2013\ge2013>0\)
\(P=x^2+2y^2-2xy+4y+7=\left(x^2-2xy+y^2\right)+\left(y^2+4y+4\right)+3=\left(x-y\right)^2+\left(y+2\right)^2+3\ge3>0\)
2/
\(A=10x-6x^2+7=-6x^2+10x+7=-6\left(x^2-\frac{10}{6}x+\frac{25}{36}\right)-\frac{11}{6}=-6\left(x-\frac{5}{6}\right)^2-\frac{11}{6}\le-\frac{11}{6}< 0\)
\(B=-3x^2+7x+10=-3\left(x^2-\frac{7}{3}x+\frac{49}{36}\right)-\frac{311}{12}=-3\left(x-\frac{7}{6}\right)^2-\frac{311}{12}\le-\frac{311}{12}< 0\)
\(C=2x-2x^2-y^2+2xy-5=\left(2x-x^2-1\right)-\left(x^2-2xy+y^2\right)-4=-\left(x^2-2x+1\right)-\left(x-y\right)^2-4=-\left(x-1\right)^2-\left(x-y\right)^2-4\)\(\le-4< 0\)
\(A=3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\)
\(B=2\left(x-\frac{3}{4}\right)^2+\frac{23}{8}\)
\(C=\left(x+\frac{3}{2}\right)^2+\frac{11}{4}\)
\(D=\left(x-5\right)^2+\left(3y+1\right)^2+4\)
\(E=\left(4x+1\right)^2+\left(y-2\right)^2+1\)
\(M=-\left(x+\frac{7}{2}\right)^2-\frac{11}{4}\)
\(N=-5\left(x-\frac{3}{5}\right)^2-\frac{41}{5}\)
\(C\) đề sai ví dụ \(x=3\Rightarrow C=2>0\)
\(D=-5\left(x-\frac{7}{10}\right)^2-\frac{131}{20}\)
\(a;x^2-3x+3=x^2-2\cdot\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+3\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\Leftrightarrow x^2-3x+3>0\forall x\)
a)\(-\frac{1}{4}x^2+x-2=-\left[\left(\frac{1}{2}x\right)^2-2.\frac{1}{2}x+1+1\right]\)
\(=-1-\left(\frac{1}{2}x-1\right)^2\le-1\left(đpcm\right)\)
b)\(-3x^2-6x-9=-3\left(x^2-2x+1+2\right)\)
\(=-6-3\left(x-1\right)^2\le-6\left(đpcm\right)\)
c)\(-2x^2+3x-6=-2\left(x^2-\frac{3}{2}x+3\right)\)
\(=-2\left(x^2-2.\frac{3}{4}x+\frac{9}{16}+\frac{39}{16}\right)\)
\(=-\frac{39}{8}-2\left(x-\frac{3}{4}\right)^2\le-\frac{39}{8}\)
d) tương tự
a) A= \(\left(x^2-2xy+y^2\right)+\left(x^2+10x+25\right)+x^2+1\)1
=\(\left(x-y\right)^2+\left(x+5\right)^2+x^2+1\ge1\)
\(\Rightarrow\)A dương với mọi x,y
C = -3x2 - 6x - 12
= -3( x2 + 2x + 1 ) - 9
= -3( x + 1 )2 - 9 ≤ -9 < 0 ∀ x ( đpcm )
D = -4x2 - 12x - 15
= -4( x2 + 3x + 9/4 ) - 6
= -4( x + 3/2 )2 - 6 ≤ -6 < 0 ∀ x ( đpcm )
E = -30 - 5x2 + 10x
= -5( x2 - 2x + 1 ) - 25
= -5( x - 1 )2 - 25 ≤ -25 < 0 ∀ x ( đpcm )
\(C=-3x^2-6x-12\)
\(\Rightarrow C=-\left(3x^2+6x+12\right)\)
\(\Rightarrow C=-\left(3x^2+6x+3+9\right)\)
\(\Rightarrow C=-\left[3\left(x+1\right)^2+9\right]\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow3\left(x+1\right)^2+9\ge9\)
\(\Rightarrow C=-\left[3\left(x+1\right)^2+9\right]\le-9\)
=> Đpcm
\(D=-4x^2-12x-15\)
\(\Rightarrow D=-\left(4x^2+12x+15\right)\)
\(\Rightarrow D=-\left[4\left(x+\frac{3}{2}\right)^2+6\right]\)
Vì \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow4\left(x+\frac{3}{2}\right)^2+6\ge6\)
\(\Rightarrow D=-\left[4\left(x+\frac{3}{2}\right)^2+6\right]\le-6\)
=> Đpcm
\(E=-30-5x^2+10x\)
\(\Rightarrow E=-\left(5x^2-10x+30\right)\)
\(\Rightarrow E=-\left[5\left(x-1\right)^2+25\right]\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow5\left(x-1\right)^2+25\ge25\)
\(\Rightarrow E=-\left[5\left(x-1\right)^2+25\right]\le-25\)
=> Đpcm