K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2020

x2 - 8x + 20

= x2 - 8x + 20

= ( x2 - 8x + 16 ) + 4

= ( x - 4 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )

x2 + 5y2 + 2x + 6y + 34

x2 + 5y2 + 2x + 6y + 34

= ( x2 + 2x + 1 ) + ( 5y2 + 6y + 9/5 ) + 156/5

= ( x + 1 )2 + 5( y2 + 6/5y + 9/25 ) + 156/5

= ( x + 1 )2 + 5( y + 3/5 )2 + 156/5 ≥ 156/5 > 0 ∀ x, y ( đpcm )

15 tháng 9 2019

\(A=x^2+8x+17=x^2+8x+16+1=\left(x+4\right)^2+1>0\forall x\)

\(B=x^2-10x+29=x^2-10x+25+4=\left(x-5\right)^2+4>0\forall x\)

\(C=-x^2+2x-5=-\left(x^2-2x+5\right)=-\left(x^2-2x+1+4\right)\)

\(=-\left[\left(x-1\right)^2+4\right]=-\left(x-1\right)^2-4< 0\forall x\)

28 tháng 10 2020

\(x^2-2x+y^2+4y+6\)

\(=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+1\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\left(y+2\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\forall x,y\)

hay \(x^2-2x+y^2+4y+6\)luôn không âm với mọi x, y ( đpcm )

29 tháng 10 2020

\(x^2-2x+y^2+4y+6\)    

\(=x^2-2x+1+y^2+4y+4+1\)   

\(=\left(x-1\right)^2+\left(y-2\right)^2+1\)    

Có \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y-2\right)^2\ge0\forall y\end{cases}}\)    

\(\left(x-1\right)^2+\left(y-2\right)^2+1\)   luôn không âm với mọi x y ( đpcm ) 

19 tháng 8 2020

+) \(A=x\left(x-6\right)+10\)

\(A=x^2-6x+10\)

\(A=x^2-6x+9+1\)

\(A=\left(x-3\right)^2+1\ge1\)

Vậy.....

+) \(B=x^2-2x+9y^2-6y+3\)

\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)

\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\)

Vậy .....

19 tháng 8 2020

thanks bạn nhìu

12 tháng 10 2019

2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)

b) \(x^2+16x+64=\left(x+8\right)^2\)

c) \(x^3-8y^3=x^3-\left(2y\right)^3\)

\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)

d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)

3 tháng 7 2017

Ta có : x2 - x + 1 

=.\(x^2+2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Mà \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

Nên : \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Hay \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

Vậy giá trị của biểu thức luôn luôn dương với mọi x 

3 tháng 7 2017

Ta có : x2 - 8x + 17 

= x2 - 2.x.4 + 16 + 1

= (x - 4)2 + 1 

Mà (x - 4)2 \(\ge0\forall x\)

Nên : (x - 4)2 + 1 \(\ge1\forall x\)

Hay (x - 4)2 + 1 \(>0\forall x\)\(>0\forall x\)

Vậy giá trị của biểu thức luôn luôn dương với mọi x 

11 tháng 7 2017

\(B = x^2 - 2x + 9y^2 - 6y + 3=(x-1)^2+(3y-1)^2+1 > 0\)

Vậy biểu thức B luôn dương với mọi x, y.

Ta có: \(A=x\left(x-6\right)+10\)

\(\Rightarrow A=x^2-6x+10\)

\(\Rightarrow A=\left(x^2-6x+3\right)+7\)

\(\Rightarrow A=\left(x+\sqrt{3}\right)^2+7\)

\(\left(x+\sqrt{3}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\sqrt{3}\right)^2+7\ge7\forall x\)

\(\Rightarrow A>0\forall x\)