Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)đpcm<=>(a2+3)2>4(a2+2)<=>(a2+1)2>0(lđ)
b)đpcm<=>\(a^4+b^4\ge ab\left(a^2+b^2\right)\)
Theo AM-GM\(\left\{{}\begin{matrix}a^4+b^4+b^4+b^4\ge4a^3b\\b^4+a^4+a^4+a^4\ge4b^3a\end{matrix}\right.\)
=>đpcm. Dấu bằng xảy ra khi a=b
c)AM-GM:\(VT\ge256\left|abcd\right|\ge256abcd\)
Dấu bằng xảy ra khi hai số bằng 2, hai số còn lại bằng -2 hoặc cả 4 số bằng 2 hoặc cả 4 số bằng -2
Bài 1:
Ta có: \(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}=\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\)
Áp dụng bđt Cauchy Schwarz có:
\(\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{a\sqrt{a^2+8bc}+b\sqrt{b^2+8bc}+c\sqrt{c^2+8bc}}\)
Lại sử dụng bđt Cauchy schwarz ta có:
\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}=\sqrt{a}\cdot\sqrt{a^3+8abc}+\sqrt{b}\cdot\sqrt{b^3+8abc}+\sqrt{c}\cdot\sqrt{c^3+8abc}\ge\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}\)
\(\Rightarrow\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}}=\sqrt{\dfrac{\left(a+b+c\right)^3}{a^3+b^3+c^3+24abc}}\)
=> Ta cần chứng minh: \(\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\)
hay \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Áp dụng bđt Cosi ta có:
\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)
Nhân các vế của 3 bđt trên ta đc:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)
=> Đpcm
3: =>a^3+b^3+c^3>=3abc
=>(a+b)^3+c^3-3ab(a+b)-3abc>=0
=>(a+b+c)(a^2+b^2+c^2-ab-bc-ac)>=0
=>a^2+b^2+c^2-ab-bc-ac>=0
=>2a^2+2b^2+2c^2-2ab-2bc-2ac>=0
=>(a-b)^2+(a-c)^2+(b-c)^2>=0(luôn đúng)
Đề phải cho a,b,c lớn hơn 0 mới đúng
BĐT cần chứng minh tương đương
\(\left(a+b+c\right)\left(\dfrac{a^2+b^2}{a+b}+\dfrac{b^2+c^2}{b+c}+\dfrac{a^2+c^2}{a+c}\right)\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\Sigma\dfrac{c\left(a^2+b^2\right)+\left(a+b\right)\left(a^2+b^2\right)}{a+b}\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+\Sigma\dfrac{c\left(a^2+b^2\right)}{a+b}\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\Sigma\dfrac{c\left(\left(a+b\right)^2-2ab\right)}{a+b}\le a^2+b^2+c^2\)
\(\Leftrightarrow2\left(ac+bc+ac\right)\le a^2+b^2+c^2+2abc\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\)
áp dụng Bđt \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)\
\(\Rightarrow a^2+b^2+c^2+2abc\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\ge a^2+b^2+c^2+\dfrac{9abc}{a+b+c}\)
Ta cần cm
\(a^2+b^2+c^2+\dfrac{9abc}{a+b+c}\ge2\left(ab+bc+ac\right)\)
BĐT trên tương đương
\(a^3+b^3+c^3+3abc\ge a^2\left(b+c\right)+b^2\left(a+c\right)+c^2\left(a+b\right)\)
BĐT trên là hệ quả của BĐT Schur nên ta có đpcm
d/ \(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)
e/ \(\Leftrightarrow a^6+b^6+a^5b+ab^5\ge a^6+b^5+a^4b^2+a^2b^4\)
\(\Leftrightarrow a^5b-a^4b^2+ab^5-a^2b^4\ge0\)
\(\Leftrightarrow a^4b\left(a-b\right)-ab^4\left(a-b\right)\ge0\)
\(\Leftrightarrow ab\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow ab\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)
f/ \(\frac{a^6}{b^2}+a^2b^2\ge2\sqrt{\frac{a^8b^2}{b^2}}=2a^4\) ; \(\frac{b^6}{a^2}+a^2b^2\ge2b^4\)
\(\Rightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge2a^4+2b^4-2a^2b^2\)
\(\Leftrightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge a^4+b^4+\left(a^4+b^4-2a^2b^2\right)\)
\(\Leftrightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge a^4+b^4+\left(a^2-b^2\right)^2\ge a^4+b^4\)
a/ \(VT=a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\)
\(VT=a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2\)
\(VT\ge6\sqrt[6]{a^6b^6c^6}=6\left|abc\right|\ge6abc\)
Dấu "=" xảy ra khi \(a=b=c=1\)
b/ \(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(\frac{a}{2}=b=c=d=e\)
c/ \(\Leftrightarrow\frac{a^3+b^3}{2}\ge\frac{a^3+b^3+3a^2b+3ab^2}{8}\)
\(\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(a=b\)
a) \(\Leftrightarrow ab\le\dfrac{\left(a+b\right)^2}{4}\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow\left(a-b\right)^2\ge0\)
Vậy ta có đpcm. Đẳng thức xảy ra khi a=b
b) Áp dụng BĐT Cauchy:
\(x^4+3=x^4+1+1+1\ge4\sqrt[4]{x^4.1.1.1}=4x\)(đpcm)
Đẳng thức xảy ra khi \(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)