Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho x,y>0 thỏa mãn x3+y3=x−y. Chứng minh: x2+y2<1.
Cho x,y>0x,y>0 thỏa mãn x3+y3=x−y. Chứng minh: x2+y2<1.
.............................
Bạn tham khảo cách chứng minh tại đây :
Câu hỏi của Nguyễn Huy Thắng - Toán lớp 10 | Học trực tuyến
Áp dụng : Theo BĐT \(AM-GM\) ta có :
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)
Nhân vế theo vế ta được :
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=3.3.1=9\)
Dấu \("="\) xảy ra khi \(a=b=c\)
a)Ta có:
\(\left(a+b\right)^2+\left(a-b\right)^2=2\left(a^2+b^2\right)\)
Do \(\left(a-b\right)^2\ge0\),nên\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
b)Xét \(\left(a+b+c\right)^2+\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\)
Khai triển và rút gọn ta được:\(3\left(a^2+b^2+c^2\right)\)
Vậy \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(a^3+b^3\le a^4+b^4\)
\(\Leftrightarrow\left(a+b\right)\left(a^3+b^3\right)\le2\left(a^4+b^4\right)\) ( vì \(a+b\ge2\) )
\(\Leftrightarrow a^4+ab^3+a^3b+b^4\le2a^4+2b^4\)
\(\Leftrightarrow ab^3+a^3b\le a^4+b^4\)
\(\Leftrightarrow\left(a^4-a^3b\right)+\left(b^4-ab^3\right)\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (1)
Ta thấy \(a^2+ab+b^2=\left(a^2+ab+\frac{1}{4}b^2\right)+\frac{3}{4}b^2+\left(a+\frac{1}{2}b\right)^2+\frac{3}{4}b^2\ge0\forall ab\)
Nên (1) luôn đúng với mọi a;b
Vậy \(a^3+b^3\le a^4+b^4\)
\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2ac+2bc\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(Luôn đúng)
cách khác ạ :3
Áp dụng BĐT Cauchy Schwarz dạng engel ta có :
\(a^2+b^2+c^2=\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\ge\frac{\left(a+b+c\right)^2}{3}\)
Vậy ta có điều phải chứng minh
bài 2
(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi
Giả sử ngược lại \(a^2+b^2+c^2< abc\)
khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)
Tương tự \(b< ac,c< ab\)
Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)
mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên
\(abc>a^2+b^2+c^2\ge ab+bc+ac\)
\(\Rightarrow abc>ab+ac+bc\left(2\right)\)
Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)
Vậy bài toán được chứng minh
3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)
và \(xy+yz+xz\ge1\)
ta phải chứng minh có ít nhất hai trong ba bất đẳng thức sau đúng
\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)
Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử
\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)
Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)
Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)
\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó
\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)
\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)
\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)
mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.
\(a+b\ge2\Rightarrow a+b-2\ge0\)
Ta có \(a^2\left(a-1\right)+b^2\left(b-1\right)\ge0\Leftrightarrow a^2\left(a-1\right)+b^2\left(b-1\right)-\left(a-1\right)-\left(b-1\right)+a+b-2\ge0\)
\(\Leftrightarrow\left(a-1\right)\left(a^2-1\right)+\left(b-1\right)\left(b^2-1\right)+a+b-2\ge0\)
\(\Leftrightarrow\left(a-1\right)^2\left(a+1\right)+\left(b-1\right)^2\left(b+1\right)+a+b-2\ge0\) luôn đúng với a,b không âm và \(a+b\ge2\)
Từ đó có điều phải chứng minh.
Đặt \(A=\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\left(a,b,c>0\right)\).
Ta có:
\(\frac{a^3}{a^2+b^2}=\frac{a\left(a^2+b^2-b^2\right)}{a^2+b^2}=\frac{a\left(a^2+b^2\right)-ab^2}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\).
Vì \(a,b>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(a^2+b^2\ge2ab\).
\(\Rightarrow\frac{1}{a^2+b^2}\le\frac{1}{2ab}\).
\(\Leftrightarrow\frac{ab^2}{a^2+b^2}\le\frac{ab^2}{2ab}=\frac{b}{2}\).
\(\Rightarrow\frac{-ab^2}{a^2+b^2}\ge\frac{-b}{2}\).
\(\Leftrightarrow a-\frac{ab^2}{a^2+b^2}\ge a-\frac{b}{2}\).
\(\Leftrightarrow\frac{a^3}{a^2+b^2}\ge a-\frac{b}{2}\left(1\right)\).
Dấu bằng xảy ra \(\Leftrightarrow a=b>0\).
Chứng minh tương tự, ta được:
\(\frac{b^3}{b^2+c^2}\ge b-\frac{c}{2}\).với \(b,c>0\)\(\left(2\right)\)
Dấu bẳng xảy ra \(\Leftrightarrow b=c>0\).
Chứng minh tương tự, ta được:
\(\frac{c^3}{c^2+a^2}\ge c-\frac{a}{2}\)với \(a,c>0\)\(\left(3\right)\).
Dấu bằng xảy ra \(\Leftrightarrow a=c>0\).
Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:
\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\)\(\ge\)\(a+b+c-\frac{a}{2}-\frac{b}{2}-\frac{c}{2}\).
\(\Leftrightarrow A\ge\frac{a+b+c}{2}\).
\(\Leftrightarrow A\ge\frac{6}{2}\)(vì \(a+b+c=6\)).
\(\Leftrightarrow A\ge3\)(điều phải chứng minh).
Dấu bằng xảy ra.
\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\a+b+c=6\end{cases}}\Leftrightarrow a=b=c=2\).
Vậy nếu \(a,b,c\)là các số thực dương thỏa mãn \(a+b+c=6\)thì:
\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge3\).
xét hiệu \(\frac{a^3+b^3}{2}-\left(\frac{a+b}{2}\right)^3=\frac{3}{8}\left(a+b\right)\left(a-b\right)^2\ge0\)(luôn đúng với mọi a,b>0)
a 3 b 3 = a 3 3 . b 3 3 = a b 3
Vế trái bằng vế phải nên đẳng thức được chứng minh.