K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2017

\(C=2\left(1+2\right)+2^3\left(1+2\right)+2^5\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(C=3\left(2+2^3+2^5+...+2^{59}\right)\)Chia hết cho 3

\(C=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(C=7\left(2+2^4+2^7+...+2^{55}+2^{57}\right)\)Chia hết cho 7

\(C=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(C=15\left(2+2^5+...+2^{57}\right)\)chia hết cho 15

C = 2 + 22 + 23 + 24 + ... +260

   =2.(1+2)+23.(1+2)+...+259.(1+2)

   =2.3+23.3+...+259.3

   =3.(2+23+...+259) chia hết cho 3

C chia hết cho 3

C = 2 + 22 + 23 + 24 + ... +260

   =2.(1+2+4)+24.(1+2+3)+...+258.(1+2+4)

   =2.7+24.7+...+258.7

   =7.(2+24+...+258) chia hết cho 7

C chia hết cho 7

C = 2 + 22 + 23 + 24 + ... +260

   =2.(1+2+4+8)+...+257.(1+2+4+8)

   =2.15+...+257.15

   =15.(2+257) chia hết cho 15

C chia hết cho 15

Vậy C chia hết cho 3,7,15.

b)

P là số nguyên tố lớn hơn 3

=> p không chia hết cho 3

=> p chia 3 dư 1 hoặc p chia 3 dư 2

=> p=3K+1 hoặc p=3K+2       (K\(\in\)\(ℕ^∗\))

+ p=3K+1

(p-1).(p+1)=(3K+1-1).(3K+1+1)=3K.(3K+2) chia hết cho 3 (1)

+p=3K+2

(p-1).(p+1)=(3k+2-1).(3k+2+1)=(3k+1).(3k+3)=(3k+1).3.(k+1) chia hết cho 3 (2)

Từ (1) và (2) suy ra p là số nguyên tố lớn hơn 3 thì chia hết cho 3 (a)

Ta có: p nguyên tố lớn hơn 3

=> P là số lẻ

p-1 là số chẵn

p+1 là số chẵn

=> (p-1).(p+1) chia hết cho 8 (b) 

Từ (A) và (b) suy ra p là số ntố lớn hơn 3 thì (p-1).(p+1) chia hết cho 24

14 tháng 12 2022

a: \(2A=2^2+2^3+...+2^{61}\)

=>A=2^61-2

b: \(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{55}+2^{58}\right)\) chia hết cho 7(1)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)=3\left(2+2^3+...+2^{59}\right)⋮3\left(2\right)\)

Từ (1), (2) suy ra A chia hết cho 21

28 tháng 2 2022

Đề sai, viết lại thành:

A= 21+22+23+24+...+259+260

Giải:

A=21+22+23+...............+259+260

A=(21+22+23)+...............+(258+259+260)

A=2.(1+2+22)+............+258.(1+2+22)

A=2.7+.......................+258.7

A=(2+24+..............+258).7 ⋮ 7(đpcm)

28 tháng 2 2022

umk

10 tháng 10 2021

giúp mình với mình chuẩn bị phải nộp bài rồi T~T 

10 tháng 10 2021

\(B=2+2^2+2^3+...+2^{60}\)

\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{58}\right)⋮7\)

17 tháng 1 2017

24 tháng 4 2019

Sơ đồ con đường

Lời giải chi tiết

 

Ta có: 

C = 2 + 2 2 + 2 3 + 2 4 + ... + 2 59 + 2 60    = 2 1 + 2 + 2 3 1 + 2 + ... + 2 59 1 + 2    = 2.3 + 2 3 .3 + ... + 2 59 .3    = 2 + 2 3 + ... + 2 59 .3 ⇒ C ⋮ 3

23 tháng 10 2018

23 tháng 12 2023

A = 8⁸ + 2²⁰

= (2³)⁸ + 2²⁰

= 2²⁴ + 2²⁰

= 2²⁰.(2⁴ + 1)

= 2²⁰.17 ⋮ 17

Vậy A ⋮ 17

5 tháng 10 2021

A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259)  chia hết cho 3
=>A  chia hết cho 3
A= (2+22+23)+...+(258+259+260)
A=2.(1+2+22)+...+258.(1+2+22)
A=2.7+...+258.7
A=7.(2+...+258)
Vì 7  chia hết cho 7 =>7.(2+...+258)  chia hết cho 7

CHIA HẾT CHO 3 :

A= (2+22)+(23+24)+...+(259+260)

A=2.(1+2)+23.(1+2)+...+259.(1+2)

A=2.3+23.3+...+259.3

A=3.(2+23+...+259)

Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3

=>A chia hết cho 3


 

4 tháng 11 2021

dcv