K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2019

a)= x2-6x+8+3=x2-2.3.x+32+2 =(x-3)2+2 >0

b)= x2-2.x.2y+(2y)2+x2+2x+1+4 = (x-2y)2+(x+1)2+4 > 0

10 tháng 7 2017

A = x2 - x + 1

A = x2 - 2.x.\(\frac{1}{2}\)+\(\frac{1}{4}\) +\(\frac{3}{4}\)

A = \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

B = (x - 2)(x - 4) + 3

B = x2 - 4x - 2x + 8 + 3

B = x2 - 6x + 11

B = x2 - 2.3.x + 9 + 3

B = \(\left(x-3\right)^2+3>0\)

10 tháng 7 2017

C = 2x2 - 4xy + 4y2 + 2x + 5

C = (x2 - 4xy + 4y2) + x2 + 2x + 5

C = (x - 2y)2 + (x2 + 2x + 1) + 4

C = (x - 2y)2 + (x + 1)2 + 4

Xét biểu thức C thấy : 

Có 2 hạng tử không âm (vì là bình phương)

Vậy C > 0 

4 tháng 8 2018

b, x+y2+z2 +2x-4y-6z+14=0

<=> (x2+2x+1)+(y2-4y+4)+(z2-6z+9)=0

<=> (x+1)2+(y-2)2+(z-3)2=0

=>(x+1)2=(y-2)2=(z-3)2=0

=>x+1=y-2=z-3=0

=> x=-1; y=2; z=3

c, 2x2+y2-6x-4y+2xy+5=0

<=> (x2+y2+4+2xy-4x-4y)+(x2-2x+1)=0

<=> (x+y-2)2+(x-1)2=0

=> (x+y-2)2=(x-1)2=0

=>x+y-2=x-1=0

=>x=1; y=1

14 tháng 1 2016

Tuấn Nguyễn: 100% k sai

6 tháng 9 2018

1/ x^2 +4xy +4y^2 = (x +2y)^2

2/ -x^3 +9x^2 -27x+27= - (x^3 -9x^2+27x-27) = - (x-3)^3

3/ 8x^6 +36x^4y+54^2y^2+27y^3 = (2x^2+3y)^3

4/ x^3 - 6x^2y+12xy^2 -8y^3= (x-2y)^3

6 tháng 9 2018

1) x2 + 4xy + 4y2 = ( x + 2y )2

2) - x3 + 9x2 - 27x + 27 = ( 3 - x )2

3) 8x6 + 36x4y + 54x2y2 + 27y3 = ( 2x2 + 3y )3

4) x3 - 6x2y + 12xy2 - 8y3 = ( x - 2y )3

5) x2 + 4y2 +1 - 4xy - 2x + 4y = ( x2 - 2y - 1 )2

6) x2 + y2 + 4 + 2xy + 4x + 4y = ( x + y + 2 )2

17 tháng 6 2015

a) 4x2 - 12x + 11=4x2-12x+9+2=(2x-3)2+2

vì (2x-3)2\(\ge\)0

nên (2x-3)2+2 dương với mọi x

=>4x2 - 12x + 11luôn luôn dương với mọi x

b) x2 - 2x + y2 + 4y + 6

=x2-2x+1+y2+4y+4+1

=(x-1)2+(y+2)2+1

vì (x-1)2\(\ge\)0 ; (y+2)2\(\ge\)0

nên (x-1)2+(y+2)2+1 dương với mọi x;y

=>x2 - 2x + y2 + 4y + 6  luôn dương với mọi x;y

24 tháng 10 2016

a/B=x2+2x+2013

25 tháng 6 2019

\(x^2+y^2-x+4y+5\)

\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+4y+4\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+2\right)^2+\frac{3}{4}\)

\(\ge\frac{3}{4}\)

Dấu "=" xảy ra khi \(x=\frac{1}{2};y=-2\)

25 tháng 6 2019

\(B=2x^2+4y^2+4xy-3x-1\)

\(=\left(x^2+4xy+4y^2\right)+\left(x^2-3x+\frac{9}{4}\right)-\frac{13}{4}\)

\(=\left(x+2y\right)^2+\left(x-\frac{3}{2}\right)^2-\frac{13}{4}\)

\(\ge-\frac{13}{4}\)

Dấu "=" xảy ra khi \(x=\frac{3}{2};y=-\frac{3}{4}\)

16 tháng 2 2017

3x(x+5)-2x-10=0

<=>3x(x+5)-(2x+10)=0

<=>3x(x+5)-2(x+5)=0

<=>(3x-2)(x+5)=0

<=>\(\hept{\begin{cases}3x-2=0\\x+5=0\end{cases}}\)<=>\(\hept{\begin{cases}x=\frac{2}{3}\\x=\left(-5\right)\end{cases}}\)

vậy tập nghiệm cua phương trình là S={\(\frac{2}{3};-5\)}

       

20 tháng 2 2017

cám ơn