Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ko có 2x2 đâu mik thấy đề bài nó ghi như thế. bn giúp mik nhé!
a) \(M=x^2-3x+10\)
\(M=x^2-2\cdot\dfrac{3}{2}\cdot x+\dfrac{9}{4}+\dfrac{31}{4}\)
\(M=\left(x^2-2\cdot\dfrac{3}{2}\cdot x+\dfrac{9}{4}\right)+\dfrac{31}{4}\)
\(M=\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}\)
Mà: \(\left(x-\dfrac{3}{2}\right)^2\ge0\) nên: \(M=\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)
Dấu "=" xảy ra
\(\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}=\dfrac{31}{4}\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=0\)
\(\Leftrightarrow x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)
Vậy: \(M_{min}=\dfrac{31}{4}\) với \(x=\dfrac{3}{2}\)
b) \(N=2x^2+5y^2+4xy+8x-4y-100\)
\(N=x^2+x^2+4y^2+y^2+4xy+8x-4y-120+16+4\)
\(N=\left(x^2+4xy+4y^2\right)+\left(x^2+8x+16\right)+\left(y^2-4y+4\right)-120\)
\(N=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\)
Mà:
\(\left\{{}\begin{matrix}\left(x+2y\right)^2\ge0\\\left(x+4\right)^2\ge0\\\left(y-2\right)^2\ge0\end{matrix}\right.\) nên \(N=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\ge120\)
Dấu "=" xảy ra:
\(\left\{{}\begin{matrix}\left(x+2y\right)^2=0\\\left(x+4\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-4+2y=0\\x=-4\\y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-4\\y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)
Vậy: \(N_{min}=120\) khi \(\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)
\(C=2x^2-4xy+4y^2+2x+5\)
\(=\left(x^2-4xy+4y^2\right)+\left(x^2+2x+1\right)+4\)
\(=\left(x-2y\right)^2+\left(x+1\right)^2+4\ge4\forall x;y\)
Vậy C luôn dương
\(C=2x^2-4xy+4y^2+2x+5\)
\(=\left(x^2-4xy+4y^2\right)+\left(x^2+2x+1\right)+4\)
\(=\left(x-2y\right)^2+\left(x+1\right)^2+4\ge4\forall x:y\)
Vậy C luôn dương
\(B=x^2-2x+y^2+4y+6=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)
\(B=x^2-2x+y^2+4y+6\)
\(=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)
\(x^2+4y^2-2x-4xy+4y+2018=\left[x^2-2x\left(1+2y\right)+\left(1+2y\right)^2\right]+2017=\left(x-1-2y\right)^2+2017\ge2017>0\)
\(a,9x^2+y^2+2z^2-18x+4z-6y+20=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
\(b,5x^2+5y^2+8xy+2y-2x+2=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(c,5x^2+2y^2+4xy-2x+4y+5=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
\(d,x^2+4y^2+z^2=2x+12y-4z-14\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)
\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)
Pt vô nghiệm do ko có 2 bình phương số nguyên có tổng là 11
e: Ta có: \(x^2-6x+y^2+4y+2=0\)
\(\Leftrightarrow x^2-6x+9+y^2+4y+4-11=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)
Dấu '=' xảy ra khi x=3 và y=-2
Đặt \(P=-x^2+4xy-5y^2-2x+4y-5\)
\(=-\left(x^2-4xy+4y^2\right)-2\left(x-2y\right)-1-y^2-4\)
\(=-\left(x-2y\right)^2-2\left(x-2y\right)-1-y^2-4\)
\(=-\left[\left(x-2y\right)^2+2\left(x-2y\right)+1\right]-y^2-4\)
\(=-\left(x-2y+1\right)^2-y^2-4\)
Do \(\left\{{}\begin{matrix}-\left(x-2y+1\right)^2\le0\\-y^2\le0\\-4< 0\end{matrix}\right.\) ; \(\forall x;y\)
\(\Rightarrow-\left(x-2y+1\right)^2-y^2-4< 0;\forall x;y\)
Vậy P luôn âm