Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)2x(2x+7)=4(2x+7)
2x(2x+7)-4(2x+7)=0
(2x+7)(2x-4)=0
\(\Rightarrow\orbr{\begin{cases}2x+7=0\\2x-4=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-\frac{7}{2}\\x=2\end{cases}}\)
b)Ta có:x3-4x2+ax=x3-3x2-x2+ax
=x2(x-3)-x(x-a)
Để x3-4x2+ax chia hết cho x-3 thì a=3
A = 3 ( X^2 - 3/5 X + 1) = 3 ( X - 5/6 )^2 + 11/12 > 0 => đpcm
B = 4 (x^2 + 3/4 x + 1/2 ) = 4 (x+3/8)^2 + 23/16 > 0 => đpcm
B = x2 + 4x + 6
= (x2 + 4x + 4) + 2
= (x + 2)2 + 2 > 0
D = x2 + x + 1
= (x2 + 2x\(\frac{1}{2}\)+\(\frac{1}{4}\)) + \(\frac{3}{4}\)
= (x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)> 0
F = 2x2 + 4x + 3
= (2x2 + 4x + 2) + 1
= (\(\sqrt{2x}+\sqrt{2}\))2 + 1 > 0
H = 4x2 + 4x + 2
= (4x2 + 4x + 1) + 1
= (2x + 1)2 + 1 > 0
K = 4x2 + 3x + 2
= (4x2 + 2.2.\(\frac{3}{4}\)x + \(\frac{9}{16}\)) + \(\frac{23}{16}\)
= (2x + \(\frac{3}{4}\))2 + \(\frac{23}{16}\)> 0
L = 2x2 + 3x + 4
= (x2 + 2x\(\frac{3}{2}\) + \(\frac{9}{4}\)) + x2 + \(\frac{7}{4}\)
= (x + \(\frac{3}{2}\))2 + x2 + \(\frac{7}{4}\)> 0
Vậy các biểu thức trên luôn dương với mọi x
\(B=x^2+2x+1+5=\left(x+1\right)^2+5>0\)
\(H=4x^2+4x+1+1=\left(2x+1\right)^2+1>0\)
Các đa thức còn lại đều có delta < 0 và hệ số a >0 nên luôn dương với mọi x
\(A=x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1>1\)(dương)
\(B=x^2+4x+6=x^2+2.x.2+2^2+2=\left(x+2\right)^2+2>2\)(dương)
\(C=x^2-x+1=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>\frac{3}{4}\)(dương)
\(D=x^2+x+1=x^2+2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>\frac{3}{4}\)(dương)
\(E=x^2+3x+3=x^2+2.x.\frac{3}{2}+\frac{9}{4}+\frac{3}{4}=\left(x+\frac{3}{4}\right)^2+\frac{3}{4}>\frac{3}{4}\)(dương)
Bạn làm tương tự nhé
Câu a phần I sai. đề là :
a) A = -3x(x - 5 ) + 3(x2 - 4x ) - 3x + 10
a, \(x^2+4x+6\)
\(=x^2+2x+2x+4+2\)
\(=\left(x^2+2x\right)+\left(2x+4\right)+2\)
\(=x.\left(x+2\right)+2.\left(x+2\right)+2\)
\(=\left(x+2\right)^2+2\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+2\ge2>0\)
Vậy......
b, \(x^2+x+1\)
\(=x^2+\dfrac{1}{2}x+\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x^2+\dfrac{1}{2}x\right)+\left(\dfrac{1}{2}x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x+\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
Vậy......
c, \(2x^2+4x+3\)
\(=2x^2+2x+2x+2+1\)
\(=\left(2x^2+2x\right)+\left(2x+2\right)+1\)
\(=2x.\left(x+1\right)+2.\left(x+1\right)+1\)
\(=2\left(x+1\right)^2+1\)
Với mọi giá trị của \(x\in R\) ta có:
\(2\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+1\ge1>0\)
Vậy......
Mấy câu còn lại làm tương tự!
Làm theo cách " Giữ nguyên hạng tử bậc hai chia đôi hạng tử bậc nhất cân bằng hệ số để đạt được tỉ lệ thức "
Chúc bạn học tốt!!!
1, \(x^2+4x+6=\left(x+2\right)^2+2\ge2\)
...
2, \(B=x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
...
3,\(C=2x^2+4x+3=2\left(x^2+2x+1\right)+1\ge1\)
...
\(4,D=4x^2+4x+2=\left(2x+1\right)^2+1\ge1\)
...
\(5,K=4x^2+3x+2=4\left(x^2+\dfrac{3}{4}x+\dfrac{1}{2}\right)=4\left(x+2.x\dfrac{3}{8}+\dfrac{9}{64}\right)+\dfrac{23}{16}\ge\dfrac{23}{16}\)
...
\(6,L=2x^2+3x+4=2\left(x^2+\dfrac{3}{2}x+2\right)=2\left(x^2+2.x.\dfrac{3}{4}+\dfrac{9}{16}\right)+\dfrac{23}{8}\ge\dfrac{23}{8}\)
\(a,C=3x^2+4x+7\)
\(=3\left(x^2+\dfrac{4}{3}x+\dfrac{7}{3}\right)\)
\(=3\left(x^2+\dfrac{4}{3}x+\dfrac{4}{9}+\dfrac{17}{9}\right)\)
\(=3\left(x^2+\dfrac{4}{3}x+\dfrac{4}{9}\right)+\dfrac{17}{3}\)
\(=3\left(x+\dfrac{2}{3}\right)^2+\dfrac{17}{3}\)
Vì: \(3\left(x+\dfrac{2}{3}\right)^2\ge0\forall x\)
\(\Rightarrow3\left(x+\dfrac{2}{3}\right)^2+\dfrac{17}{3}\ge\dfrac{17}{3}>0\forall x\)
Hay: C > 0 với mọi x
\(b,D=2x^2-5x+5\)
\(=2\left(x^2-\dfrac{5}{2}x+\dfrac{5}{2}\right)\)
\(=2\left(x^2-\dfrac{5}{2}x+\dfrac{25}{16}+\dfrac{15}{16}\right)\)
\(=2\left(x^2-\dfrac{5}{2}x+\dfrac{25}{16}\right)+\dfrac{15}{8}\)
\(=2\left(x-\dfrac{5}{4}\right)^2+\dfrac{15}{8}\)
Vì: \(2\left(x-\dfrac{5}{4}\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-\dfrac{5}{4}\right)^2+\dfrac{15}{8}\ge\dfrac{15}{8}>0\forall x\)
Hay: D > 0 với mọi x
=.= hok tốt!!