Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left(\dfrac{x}{y\left(x-y\right)}-\dfrac{2x-y}{x\left(x-y\right)}\right):\dfrac{x+y}{xy}\)
\(=\dfrac{x^2-2xy+y^2}{xy\left(x-y\right)}\cdot\dfrac{xy}{x+y}\)
\(=\dfrac{\left(x-y\right)^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{x-y}{x+y}\)
b: \(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x-y\right)\left(x+y\right)}\cdot\dfrac{x-y}{2y}\)
\(=\dfrac{4xy+4y^2}{2\left(x+y\right)}\cdot\dfrac{1}{2y}=\dfrac{4y\left(x+y\right)}{4y\left(x+y\right)}=1\)
\(a,\frac{x}{xy-y^2}+\frac{2x-y}{xy-x^2}:\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(=\left(\frac{x}{y\left(x-y\right)}+\frac{y-2x}{x\left(x-y\right)}\right):\left(\frac{y}{xy}+\frac{x}{xy}\right)\)
\(=\left(\frac{x-y}{x\left(x-y\right)}\right):\left(\frac{x+y}{xy}\right)\)
\(=\frac{1}{x}.\frac{xy}{x+y}=\frac{y}{x+y}\)
a) ĐKXĐ: \(x\ne2y,x\ne-y;x\ne-1\)
b) \(B=\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)
\(B=\left[\dfrac{y-x}{x-2y}-\dfrac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right]:\dfrac{4x^4+4x^2y+y^2-4}{x\left(x+y\right)+\left(x+y\right)}\)
\(B=\left[\dfrac{\left(y-x\right)\left(x+y\right)}{\left(x-2y\right)\left(x+y\right)}-\dfrac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right]:\dfrac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)
\(B=\dfrac{y^2-x^2-x^2-y^2-y+2}{\left(x+y\right)\left(x-2y\right)}:\dfrac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)
\(B=\dfrac{-2x^2-y+2}{\left(x+y\right)\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)\left(x+y\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\)
\(B=\dfrac{-\left(2x^2+y-2\right)}{\left(x+y\right)\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)\left(x+y\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\)
\(B=\dfrac{-\left(x+1\right)}{\left(x-2y\right)\left(2x^2+y+2\right)}\)
\(VT=\dfrac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}=\dfrac{\left(x+y\right)\left(x+2y\right)}{\left(x+2y\right)\left(x-y\right)\left(x+y\right)}=\dfrac{1}{x-y}\)
B) Ta có: 2x-2y-x2+2xy-y2
⇔ 2(x-y)-(x2-2xy+y2)
⇔ 2(x-y)-(x-y)2
⇔ (x-y)(2-x+y)
Đúng thì tick nhé
Đặt \(A=\left[\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-1}{x^2-xy-2y^2}\right):\dfrac{4x^4+4x^2y+y^2-4}{x^2+x+xy+y}\right]:\dfrac{x+1}{2x^2+y+2}\)
\(A=\left[\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-1}{\left(x+y\right).\left(x-2y\right)}\right):\dfrac{\left(2x^2+y+2\right).\left(2x^2+y-2\right)}{\left(x+y\right).\left(x+1\right)}\right]:\dfrac{x+1}{2x^2+y+2}\)
\(A=\left(\dfrac{\left(x-y\right).\left(x+y\right)+x^2+y^2+y-2}{\left(x+y\right).\left(2y-x\right)}.\dfrac{\left(x+y\right).\left(x+1\right)}{\left(2x^2+y+2\right).\left(2x^2+y-2\right)}\right):\dfrac{2x^2+y+2}{x+1}\)
\(A=\left(\dfrac{2x^2+y-2}{2y-x}.\dfrac{x+1}{2x^2+y-2}\right).\dfrac{1}{x+1}\)
\(A=\dfrac{1}{2y-x}\)
Thay \(x=-1,76\) và \(y=\dfrac{3}{25}\) vào biểu thức ta được:
\(A=\dfrac{1}{2.\dfrac{3}{25}-\left(-1,76\right)}\)
\(A=\dfrac{1}{2}\)
Sửa đề: \(A=\left(\dfrac{x+y}{2x-2y}-\dfrac{x-y}{2x+2y}-\dfrac{2y^2}{y^2-x^2}\right):\dfrac{2y}{x-y}\)
Ta có: \(A=\left(\dfrac{x+y}{2x-2y}-\dfrac{x-y}{2x+2y}-\dfrac{2y^2}{y^2-x^2}\right):\dfrac{2y}{x-y}\)
\(=\left(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{\left(x-y\right)\left(x+y\right)}\right):\dfrac{2y}{x-y}\)
\(=\left(\dfrac{\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)}-\dfrac{\left(x-y\right)^2}{2\left(x+y\right)\left(x-y\right)}+\dfrac{4y^2}{2\left(x-y\right)\left(x+y\right)}\right):\dfrac{2y}{x-y}\)
\(=\left(\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x-y\right)\left(x+y\right)}\right):\dfrac{2y}{x-y}\)
\(=\dfrac{4y^2+4xy}{2\left(x-y\right)\left(x+y\right)}:\dfrac{2y}{x-y}\)
\(=\dfrac{4y\left(y+x\right)}{2\left(x-y\right)\left(y+x\right)}\cdot\dfrac{x-y}{2y}\)
\(=1\)