Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= -x2+2x+3
=>A= -(x2-2x+3)
=>A= -(x2-2.x.1+1+3-1)
=>A=-[(x-1)2+2]
=>A= -(x+1)2-2
Vì -(x+1)2 ≤0=> A≤-2
Dấu "=" xảy ra khi
-(x+1)2=0 => x=-1
Vây A lớn nhất= -2 khi x= -1
B=x2-2x+4y2-4y+8
=> B= (x2-2x+1)+(4y2-4y+1)+6
=> B=(x-1)2+(2y+1)2+6
=> B lớn nhất=6 khi x=1 và y=-1/2
A= 2x^2 + y^2 - 2xy -2x+3
A= x^2-2xy + y^2 + x^2 - 2x+ 1 +2
A= (x-y)^2 + (x-1)^2 + 2
(x-y)^2> hoặc = 0 với mọi giá trị của x
(x-1)^2 > hoặc =0 với mọi giá trị của x
=> (x-y)^2 + (x-1)^2 > hoặc =0 với mọi giá trị của x
=> (x-y)^2 + (x-1)^2 + 2 > hoặc =2
=> A lớn hơn hoặc bằng 2
=> GTNN của A=2 tại x=y=1
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
\(a,5x^2y-10xy^2=5xy\left(x-2y\right)\\ b,x^2+2xy+y^2-5x-5y=\left(x+y\right)^2-5\left(x+y\right)=\left(x+y\right)\left(x+y-5\right)\\ c,x^2-6x+8=\left(x^2-2x\right)-\left(4x-8\right)=x\left(x-2\right)-4\left(x-2\right)=\left(x-2\right)\left(x-4\right)\\ d,5x^2-10xy+5y^2-20z^2=5\left(x^2-2xy+y^2-4z^2\right)=5\left[\left(x-y\right)^2-\left(2z\right)^2\right]=5\left(x-y-2z\right)\left(x-y+2z\right)\)
\(A=16x^2+8x+3\\ A=16x^2+8x+1+2\\ A=\left(16x^2+8x+1\right)+2\\ A=\left(4x+1\right)^2+2\\ Do\left(4x+1\right)^2\ge0\forall x\\ \Rightarrow A=\left(4x+1\right)^2+2\ge2\forall x\\ \text{Dấu “=” xảy ra khi : }\\ \left(4x+1\right)^2=0\\ \Leftrightarrow4x+1=0\\ \Leftrightarrow4x=-1\\ \Leftrightarrow x=-\dfrac{1}{4}\\ \text{Vậy }A_{\left(Min\right)}=2\text{ khi }x=-\dfrac{1}{4}\\ \)
\(B=y^2-5y+8\\ B=y^2-5y+\dfrac{25}{4}+\dfrac{7}{4}\\ B=\left(y^2-5y+\dfrac{25}{4}\right)+\dfrac{7}{4}\\ B=\left[y^2-2\cdot y\cdot\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right]+\dfrac{7}{4}\\ B=\text{ }\left(y-\dfrac{5}{2}\right)^2+\dfrac{7}{4}\\ Do\text{ }\left(y-\dfrac{5}{2}\right)^2\ge0\forall x\\ \Rightarrow B=\left(y-\dfrac{5}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall x\\ \text{Dấu “=” xảy ra khi : }\\ \left(y-\dfrac{5}{2}\right)^2=0\\ \Leftrightarrow y-\dfrac{5}{2}=0\\ \Leftrightarrow y=\dfrac{5}{2}\\ \text{Vậy }B_{\left(Min\right)}=\dfrac{7}{4}\text{ }khi\text{ }y=\dfrac{5}{2}\)
\(C=2x^2-2x+2\\ C=2x^2-2x+\dfrac{1}{2}+\dfrac{3}{2}\\ C=\left(2x^2-2x+\dfrac{1}{2}\right)+\dfrac{3}{2}\\ C=2\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{2}\\ C=2\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]+\dfrac{3}{2}\\ C=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{2}\\ Do\text{ }\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\\ \Rightarrow C=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{2}\ge\dfrac{3}{2}\forall x\\ \text{Dấu “=” xảy ra khi : }\\ \left(x-\dfrac{1}{2}\right)^2=0\\ \Leftrightarrow x-\dfrac{1}{2}=0\\ \Leftrightarrow x=\dfrac{1}{2}\\ \text{Vậy }C_{\left(Min\right)}=\dfrac{3}{2}\text{ }khi\text{ }x=\dfrac{1}{2}\)
\(D=9x^2-6x+25y^2+10y+4\\ D=9x^2-6x+25y^2+10y+1+1+2\\ D=\left(9x^2-6x+1\right)+\left(25y^2+10y+1\right)+2\\ D=\left[\left(3x\right)^2-2\cdot3x\cdot1+1^2\right]+\left[\left(5y\right)^2+2\cdot5y\cdot1+1^2\right]+2\\ D=\left(3x-1\right)^2+\left(5y+1\right)^2+2\\ Do\text{ }\left(3x-1\right)^2\ge0\forall x\\ \left(5y+1\right)^2\ge0\forall y\\ \Rightarrow\left(3x-1\right)^2+\left(5y+1\right)^2\ge0\forall x;y\\ \Rightarrow D=\left(3x-1\right)^2+\left(5y+1\right)^2+2\ge2\forall x;y\\ \text{Dấu “=” xảy ra khi : }\left\{{}\begin{matrix}\left(3x-1\right)^2=0\\\left(5y+1\right)^2=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3x-1=0\\5y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=1\\5y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=-\dfrac{1}{5}\end{matrix}\right.\\ \text{Vậy }D_{\left(Min\right)}=2\text{ khi }x=\dfrac{1}{3};y=-\dfrac{1}{5}\)
Câu 2
\(M=x^2+6x+1\\ M=x^2+6x+9-8\\ M=\left(x^2+6x+9\right)-8\\ M=\left(x+3\right)^2-8\\ Do\text{ }\left(x+3\right)^2\ge0\forall x\\ M=\left(x+3\right)^2-8\ge-8\forall x\\ \text{Dấu “=” xảy ra khi : }\\ \left(x+3\right)^2=0\\ \Leftrightarrow x+3=0\\ \Leftrightarrow x=-3\\ \text{Vậy }M_{\left(Min\right)}=-8\text{ khi }x=-3\)
\(N=10y-5y^2-3\\ N=10y-5y^2-5+2\\ N=-\left(5y^2-10y+5\right)+2\\ N=-5\left(y^2-2y+1\right)+2\\ N=-5\left(y-1\right)^2+2\\ Do\left(y-1\right)^2\ge0\forall x\\ \Rightarrow-\left(y-1\right)^2\le0\forall x\\ \Rightarrow-5\left(y-1\right)^2\le0\forall x\\ \Rightarrow N=-5\left(y-1\right)^2+2\le2\forall x\\ \text{Dấu “=” xảy ra khi : }\\ \left(y-1\right)^2=0\\ \Leftrightarrow y-1=0\\ \Leftrightarrow y=1\\ \text{Vậy }N_{\left(Max\right)}=2\text{ khi }y=1\)