Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\hept{\begin{cases}\frac{1}{x^2}=a\\\frac{1}{y^2}=b\\\frac{1}{z^2}=c\end{cases}}\Rightarrow abc=1\) và ta cần chứng minh
\(\frac{1}{2a+b+3}+\frac{1}{2b+c+3}+\frac{1}{2c+a+3}\le\frac{1}{2}\left(1\right)\)
Áp dụng BĐT AM-GM ta có:
\(2a+b+3=\left(a+b\right)+\left(a+1\right)+2\ge2\left(\sqrt{ab}+\sqrt{a}+2\right)\)
\(\Rightarrow\frac{1}{2a+b+3}\le\frac{1}{2\left(\sqrt{ab}+\sqrt{a}+1\right)}=\frac{1}{2}\cdot\frac{1}{\sqrt{ab}+\sqrt{a}+1}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{1}{2b+c+3}\le\frac{1}{2}\cdot\frac{1}{\sqrt{bc}+\sqrt{b}+1};\frac{1}{2c+a+3}\le\frac{1}{2}\cdot\frac{1}{\sqrt{ac}+\sqrt{c}+1}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT_{\left(1\right)}\le\frac{1}{2}\left(\frac{1}{\sqrt{ab}+\sqrt{a}+1}+\frac{1}{\sqrt{b}+\sqrt{bc}+1}+\frac{1}{\sqrt{c}+\sqrt{ac}+1}\right)\le\frac{1}{2}=VP_{\left(2\right)}\left(abc=1\right)\)
a: A=-2xy+xy+xy^2=-xy+xy^2
Bậc là 3
b: \(B=xy^2z+2xy^2z-3xy^2z+xy^2z-xyz=-xyz+xy^2z\)
Bậc là 4
c: \(C=4x^2y^3-x^2y^3+x^4+6x^4-2x^2=3x^2y^3+7x^4-2x^2\)
Bậc là 5
d: \(D=\dfrac{3}{4}xy^2-\dfrac{1}{2}xy^2+xy=\dfrac{1}{4}xy^2+xy\)
bậc là 3
e: \(E=2x^2-4x^2+3z^4-z^4-3y^3+2y^3\)
=-2x^2+2z^4-y^3
Bậc là 4
f: \(=3xy^2z+xy^2z+2xy^2z-4xyz=6xy^2z-4xyz\)
Bậc là 4
Áp dụng holder ta có:
\(\left(1+1+1\right)\left(x^2y+y^2z+z^2x\right)\left(xy^2+yz^2+zx^2\right)\)
\(\ge\left(\sqrt[3]{x^4yz}+\sqrt{y^4zx}+\sqrt{z^4xy}\right)^3=xyz\left(x+y+z\right)^3\)
Dạo này bận lắm nên cũng lười luôn nên thông cảm.
Bài này làm được theo 1 cách khác nhưng phải áp dụng 2 lần bđt
lần 1 dùng bđt Schur
lần 2 dùng AM-GM
5(x+y)2+3(x-y)2=8x2+4xy+8y2=4(2x2+xy+2z2)>=5(x+y)2
=> \(\sqrt{2x^2+xy+2y^2}\ge\sqrt{\frac{5\left(x+y\right)^2}{4}}\)= \(\frac{\sqrt{5}\left(x+y\right)}{2}\)
Tương tự. Cộng lại là ra nha. Dấu = xảy ra <=> x=y=z=1/3
a) \(5x\left(x-1\right)-3y\left(x-1\right)=\left(x-1\right)\left(5x-3y\right)\)
b) \(7x^2-7y^2=7\left(x^2-y^2\right)=7\left(x-y\right)\left(x+y\right)\)
c) \(x^2y^2z+xy^2z^2+x^2yz^2=xyz\left(xy+yz+xz\right)\)
Đề phải cho x;y;z dương chứ nhỉ?
Áp dụng bất đẳng thức AM-GM:
\(x^2y^2+y^2z^2\ge2\sqrt{x^2y^4z^2}=2xy^2z\)
\(y^2z^2+x^2z^2\ge2\sqrt{x^2y^2z^4}=2xyz^2\)
\(x^2y^2+x^2z^2\ge2\sqrt{x^4y^2z^2}=2x^2yz\)
Cộng theo vế:
\(2\left(x^2y^2+y^2z^2+x^2z^2\right)\ge2\left(xy^2z+x^2yz+xyz^2\right)\)
\(\Rightarrow x^2y^2+y^2z^2+z^2x^2\ge xy^2z+x^2yz+xyz^2\)
Dấu "=" khi \(x=y=z\)