Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2
(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi
Giả sử ngược lại \(a^2+b^2+c^2< abc\)
khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)
Tương tự \(b< ac,c< ab\)
Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)
mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên
\(abc>a^2+b^2+c^2\ge ab+bc+ac\)
\(\Rightarrow abc>ab+ac+bc\left(2\right)\)
Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)
Vậy bài toán được chứng minh
3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)
và \(xy+yz+xz\ge1\)
ta phải chứng minh có ít nhất hai trong ba bất đẳng thức sau đúng
\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)
Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử
\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)
Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)
Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)
\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó
\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)
\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)
\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)
mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.
Cho x,y>0 thỏa mãn x3+y3=x−y. Chứng minh: x2+y2<1.
Cho x,y>0x,y>0 thỏa mãn x3+y3=x−y. Chứng minh: x2+y2<1.
.............................
Chỉ cần chú ý:
\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}.\frac{ca}{b}}=2c\)
Từ đó thiết lập 2 BĐT còn lại tương tự rồi cộng theo vế thu được đpcm.
Áp dụng BĐT Bunhiacopxky :
\(\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\left(abc+abc+abc\right)\ge\left(ab+bc+ac\right)^2\)
\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge\frac{\left(ab+bc+ac\right)^2}{3abc}\left(1\right)\)
Áp dụng BĐT Cauchy
\(\hept{\begin{cases}a^2b^2+b^2c^2\ge2ab^2c\\a^2b^2+c^2a^2\ge2a^2bc\Rightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\\b^2c^2+c^2a^2\ge2abc^2\end{cases}}\)
\(\Leftrightarrow\left(ab+bc+ac\right)^2\ge3\left(a+b+c\right)\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c\)
Chúc bạn học tốt !!!
Ta có:\(VT=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{c}{a}+\frac{a}{c}\)
Xét:\(\left(x-y\right)^2\ge0\forall x,y\)
\(\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow\frac{x^2+y^2}{xy}\ge2\)
\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}\ge2\left(1\right)\)
Áp dụng BĐT \(\left(1\right)\)ta được:
\(VT\ge6\)
Ta có:\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\ge\frac{9}{2\left(a+b+c\right)}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge\frac{9}{2}\)
\(\Rightarrow VP\ge4\left(\frac{9}{2}-3\right)=6\)
Trừ vế với vế ta được:
\(VT-VP\ge0\Rightarrow VT\ge VP\left(đpcm\right)\)
Dấu '=' xảy ra khi \(a=b=c\)
^^
Con Chim 7 Màu sai rồi nha =))
VT > 6 và VP > 6 thì VP - VT > 0 chứ ko chỉ VT - VP > 0 nhé =))
Lời giải như sau :
Bài 1, \(CMR:\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\left(a;b;c>0\right)\)
Áp dụng bđt quen thuộc \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\left(x;y>0\right)\) được
\(\frac{4}{b+c}\le\frac{1}{b}+\frac{1}{c}\Rightarrow\frac{4a}{b+c}\le\frac{a}{b}+\frac{a}{c}\)
Chứng mình tương tự \(\frac{4b}{c+a}\le\frac{b}{c}+\frac{b}{a}\)
\(\frac{4c}{a+b}\le\frac{c}{a}+\frac{c}{b}\)
Cộng 3 vế của bđt lại ta được
\(4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\le\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\left(Đpcm\right)\)
Dấu "=" tại a = b = c
_______________________________________________________________________
Bài 2 , CMR \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}>2\left(a;b;c>0\right)\)
Áp dụng bđt Cô-si có
\(a+b+c=a+\left(b+c\right)\ge2\sqrt{a\left(b+c\right)}\)
\(\Rightarrow\frac{2}{a+b+c}\le\frac{1}{\sqrt{a\left(b+c\right)}}\)
\(\Rightarrow\frac{2a}{a+b+c}\le\sqrt{\frac{a}{b+c}}\)(Nhân cả 2 vế với a > 0)
C/m tương tự \(\frac{2b}{a+b+c}\le\sqrt{\frac{b}{a+c}}\)
\(\frac{2c}{a+b+c}\le\sqrt{\frac{c}{a+b}}\)
Cộng 3 vế của 3 bđt lại được
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Dấu "=" ko xảy ra nên ta được đpcm
xét hiệu \(\frac{a^3+b^3}{2}-\left(\frac{a+b}{2}\right)^3=\frac{3}{8}\left(a+b\right)\left(a-b\right)^2\ge0\)(luôn đúng với mọi a,b>0)
k nguyên dương => \(k\ge1\)\(\Leftrightarrow\)\(a^k\ge a\)\(\Leftrightarrow\)\(\frac{a^k}{b+c}\ge\frac{a}{b+c}\)
Tương tự với 2 phân thức còn lại, cộng 3 bđt ta thu đc bđt Nesbit 3 ẩn => đpcm
\(\frac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow a+b\ge2\sqrt{ab}\)
<=>\(a+b-2\sqrt{ab}\ge0\)
<=>\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)
=>dpcm
Bai nay phai co dieu kien a,b >0 nha ban
Ap dung bdt \(ab\le\frac{\left(a+b\right)^2}{4}< \frac{1}{4}\) dau nho hon la do gia thiet nha ban
Ap dung bdt Cosi cho 2 so ko am
ta co A= \(ab+\frac{1}{16ab}+\frac{15}{16ab}>2\sqrt{ab.\frac{1}{16ab}}+\frac{15}{16.\frac{1}{4}}=2.\frac{1}{4}+\frac{15}{4}=\frac{17}{4}\)
Study well
Chứng minh bất đẳng thức:\(\frac{a}{b}\)+\(\frac{b}{a}\)\(\ge\) 2
Giải
\(\frac{a}{b}\)+\(\frac{b}{a}\)\(\ge\) 2
\(\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\)
\(\frac{a^2+b^2}{ab}\ge2\)
\(a^2+b^2\ge2ab\)
\(a^2+b^2-2ab\ge0\)
\(\left(a-b\right)^2\ge0\)(luôn đúng)
suy ra \(\frac{a}{b}\)+\(\frac{b}{a}\)\(\ge\) 2 (luôn đúng)
Để \(\frac{a}{b}+\frac{b}{a}\ge2\)thì \(\frac{a^2+b^2}{ab}\ge\frac{2ab}{ab}\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
Xét hiệu \(a^2+b^2-2ab=\left(a+b\right)^2\ge0\)
\(\Rightarrow a^2+b^2\ge2ab\)\(\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\left(đpcm\right)\)