K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2017

                                       làm nhanh hộ tớ nhé đến tôi tớ cần gấp

18 tháng 4 2017

làm hộ mình nhá

25 tháng 5 2021

a) \(\dfrac{a^2+a+1}{a^2-a+1}=\dfrac{\left(a+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}{\left(a-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\)

Thấy tử và mẫu của phân số đều lớn hơn 0 => \(\dfrac{a^2+a+1}{a^2-a+1}>0\)

b)\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2a+1\right)+\left(c^2-2a+1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) (luôn đúng với mọi a,b,c)

Dấu = xra khi a=b=c=1

25 tháng 5 2021

b)

\(a^2-2a+1+b^2-2b+1+c^2-2c+1\ge0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) ( Luôn đúng)

Dấu "=" xảy ra khi a=b=c=1

 

17 tháng 3 2019

nhân chéo lên

nhân a+b+c từ 9/a+b+c sang vế trái

vế phải còn 9

sau đó nhân vế trái ra 

sử dụng bdt cosi là ra nha bn

mik lớp 7 sory

7 tháng 6 2021

a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b

Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)

Dấu = xảy ra <=> a=b=1

b) Áp dụng BĐT bunhiacopxki có:

\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)

\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)

\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)

\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)

c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)

Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)

Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)

Áp dụng (1) vào S ta được:

\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)

Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)

\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)

\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)

1 tháng 12 2016

Gọi phương trình đã cho là f(x) 

Giả sử x = t là nghiệm hữu tỷ của f(x) thì: f(x) = (x - t)Q(x)

f(0) = a0 = - t.Q(x) (1)

Và f(1) = a2k + a2k-1 + ... + a1 + a0 = (1 - t).Q(x) (2)

Từ (1) ta có a0 là số lẻ nên t phải là số lẻ

Từ (2) ta thấy rằng a2k + a2k-1 + ... + a1 + alà tổng của 2k + 1 số lẻ nên là số lẻ. Từ đó ta thấy rằng (1 - t) là số lẻ

Mà (1 - t) là hiệu hai số lẻ nên không thể là số lẻ (mâu thuẫn)

Vậy f(x) không có nghiệm nguyên

29 tháng 3 2020

Tổng S có: (4n+1)-(2n+1)+1=2n+1 hạng tử; hạng tử ở giữa là \(\frac{1}{3n+1}\)

Trừ hạng tử ở giữa, ta ghép tổng S thành n cặp, mỗi cặp 2 hạng tử cách đều hạng tử ở giữa. Mỗi cặp bằng

\(\frac{1}{3n+1-k}+\frac{1}{3n+1+k}=\frac{6n+2}{\left(3n+1\right)^2-k^2}>\frac{2\left(3n+1\right)}{\left(3n+1\right)^2}=\frac{2}{3n+1}\)

Vậy \(S=\frac{2}{3n+1}\cdot n+\frac{1}{3n+1}=\frac{2n+1}{3n+1}>\frac{2n}{3n}=\frac{2}{3}\)

Để CM S<1 ta làm trội S bằng cách thay mỗi hạng tử của S bời hạng tử có GTLN là \(\frac{1}{2n+1}\)

\(S< \frac{1}{2n+1}\left(2n+1\right)=1\)

vậy \(\frac{2}{3}< S< 1\)

19 tháng 9 2018

ta có: AB <DC

Nên góc A,B là 2 góc tù,góc C,D là 2 góc nhọn

mà góc tù >90 độ,góc nhọn Bé hơn 90 độ 

Suy ra góc A+góc B>góc C+góc D

17 tháng 8 2018

\(\left(c^2+b^2-5\right)^2-4\left(ab+2\right)^2\)

\(=\left(a^2+b^2-5-2ab-4\right)\left(a^2+b^2-5+2ab+4\right)\)

\(=\left(a^2+b^2-2ab-9\right)\left(a^2+b^2+2ab-1\right)\)

\(=\left[\left(a-b\right)^2-9\right]\left[\left(a+b\right)^2-1\right]\)

\(=\left(a-b-3\right)\left(a-b+3\right)\left(a+b-1\right)\left(a+b+1\right)\)