Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\ge0\)
\(\frac{b}{ab}+\frac{a}{ab}-\frac{4}{a+b}\ge0\)
\(\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)
\(\frac{\left(a+b\right)^2}{ab\left(a+b\right)}-\frac{4ab}{ab\left(a+b\right)}\ge0\)
\(a^2+2ab+b^2-4ab\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)
Đăngr thức xảy ra <=> a = b
nhân chéo lên
nhân a+b+c từ 9/a+b+c sang vế trái
vế phải còn 9
sau đó nhân vế trái ra
sử dụng bdt cosi là ra nha bn
BĐT cần chứng minh tương đương:
\(\left(a+b\right)\left(\dfrac{a+b}{ab}\right)\ge4\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
Dấu "=" xảy ra khi và chỉ khi \(a=b\)
Áp dụng BĐT với hai số dương ta có:
`a+b>=2sqrt{ab}`
`1/a+1/b>=2/sqrt{ab}`
`=>(a+b)(1/a+1/b)>=2sqrt{ab}. 2/sqrt{ab}=4`
Dấu "=" xảy ra khi `a=b>0`
Cảm ơn em nhé, những chia sẻ kiến thức của em rất bổ ích, sẽ có giá trị với nhiều người. Mong em sẽ có nhiều đóng góp tích cực cho olm em nhá.
Nhận ngay giải thưởng 1 coin khi góp ý cho mình tỏng các part sau nhé và có thể bổ sung thêm các tips học toán
Áp dụng BĐT: \(x^2+y^2+z^2\ge xy+yz+zx\)
Dấu "=" xảy ra khi: x = y =z
Ta có: \(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\ge a^2b^4c^2+b^2c^4a^2+c^2a^4b^2\)
\(=a^2b^2c^2\left(a^2+b^2+c^2\right)\ge a^2b^2c^2\left(ab+bc+ca\right)\)
Vậy \(a^8+b^8+c^8\ge a^2b^2c^2\left(ab+bc+ca\right)\)
Dấu "=" xảy ra khi a = b = c
bạn ơi vì sao \(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\)
BĐT Nesbitt nhé ko phải Nesbit đâu .V
Bđt đấy đây: Cho a,b,c dương
CMR: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)
Giải
Ta có: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-3\)
\(=\frac{1}{2}.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\)
Áp dụng bđt Cô-si cho 3 số dương được
\(\frac{1}{2}\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\)
\(\ge\frac{1}{2}.3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}.3.\sqrt[3]{\frac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}-3\)
\(=\frac{1}{2}.9.\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}-3\)
\(=\frac{9}{2}-3\)
\(=\frac{3}{2}\)
Dấu "='' xảy ra <=> a=b=c
Vậy ...........
BĐT Nesbit: Với a,b,c dương:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(BĐT\Leftrightarrow\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\ge\frac{9}{2}\)
\(\Leftrightarrow2\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge9\)
\(\Leftrightarrow2\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge9\)
Dùng bất đẳng thức cô si hai lần vào vế trái sẽ có điều cần chứng minh.