K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2015

Xét hiệu:

(ac + bd)2 - (a2 + b2)(c2 + d2) = a2c2 + 2acbd + b2d2 - (a2c2 + a2d2 + b2c2 + b2d2) = - a2d2 + 2abcd - b2c2

= - [(ad)2 - 2ad.bc + (bc)2] = - (ad - bc)2 \(\le\) 0 với mọi a; b; c;d

=> bất đẳng thức cần chứng minh

Dấu "=" xảy ra <=> ad = bc 

 

13 tháng 9 2015

Đây là BĐT Bu-nhi-a-cốp-xki mà.

16 tháng 12 2016

a) Cách lầy lội nhất khai triển hết ra :|

\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=\left(a^2c^2+b^2c^2\right)+\left(b^2d^2+a^2d^2\right)=c^2\left(a^2+b^2\right)+d^2\left(a^2+b^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

 

16 tháng 12 2016

a) \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(\Leftrightarrow\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

Biến đổi vế traias ta có:

\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2=VP\)

=>đpcm

b)Có: \(\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(\Leftrightarrow a^2c^2+2abcd+b^2d^2\le a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

\(\Leftrightarrow-a^2d^2+2abcd-b^2c^2\le0\)

\(\Leftrightarrow-\left(a^2d^2-2abcd+b^2c^2\right)\le0\)

\(\Leftrightarrow-\left(ad-bc\right)^2\le0\), luôn luôn đúng

=>đpcm

19 tháng 9 2018

a)Ta có:VT=(ac+bd)2+(ad-bc)2=a2c2+b2d2+2acbd+a2d2+b2c2-2adbc       
             =a2c2+b2c2+b2d2+a2d2
             =(a2+b2)(c2+d2)(ĐPCM)

b)theo câu a) ta có:(ac+bd)2 ≤(a2+b2)(c2+d2)(vì (ad-bc)2 ≥0)
Dấu bằng xảy ra khi:ad=bc

17 tháng 7 2020

Bài làm:

a) Ta có: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=\left(a^2c^2+a^2d^2\right)+\left(b^2d^2+b^2c^2\right)\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

=> đpcm

b) CM bất đẳng thức Bunyakovsky chắc được dùng Cauchy đấy nhỉ!

Ta có: \(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

Áp dụng bất đẳng thức Cauchy: \(a^2d^2+b^2c^2\ge2abcd\)

\(\Rightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge a^2c^2+2abcd+b^2d^2=\left(ac+bd\right)^2\)

=> đpcm

15 tháng 1 2019

Mấy bài này cứ phá hết ra là xong thôi bạn

\(a,\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2+2abcd+b^2c^2\)

                                                              \(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)

                                                              \(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

                                                                \(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(b,\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(\Leftrightarrow a^2c^2+2abcd+b^2d^2\le a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

\(\Leftrightarrow a^2b^2-2abcd+c^2d^2\ge0\)

\(\Leftrightarrow\left(ab-cd\right)^2\ge0\)(Luôn đúng)

Dấu "=" khi ab = cd

27 tháng 11 2015

a) phân tích 2 vế ra là thấy

b)chuyển vế xong phân tích ra chứng minh nó lớn hơn hoặc băng 0 là xong

12 tháng 12 2015

 

a) nhân tung ra rồi rút gọn là OK

b) Áp dụng câu a

Vì (ad-bc)2>/ 0 => dpcm

12 tháng 12 2015

Thanks mina nhìu nha ^^ 

1 tháng 1 2016

Ta có: (ac+bd)^2<=(a^2+b^2)(c^2+d^2)                                                          <=> a^2*c^2+2*a*b*c*d+b^2*d^2<=a^2*c^2+a^2*d^2+b^2*c^2+b^2*d^2.            <=> 2*a*b*c*d<=a^2*d^2+b^2*c^2.                                                           <=> 0<=(ad+bc)^2. (Luôn đúng với mọi a, b, c, d).                                   => đccm.                                                                                                         ( dấu <= là bé hơn hoặc bằng) tick cho em nha

14 tháng 1 2016

mik làm rồi ở dưới đó bạn