\(\left(1+x\right)^r\ge1+rx\) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2016

Khi r=0, bất đẳng thức trở thành  tức là  mà rõ ràng đúng.

Bây giờ giả sử bất đẳng thức đúng với r=k: 

Cần chứng minh: 

Thật vậy,  (vì theo giả thiết )  (vì )

=> Bất đẳng thức đúng với r=k+1.

Theo nguyên lý quy nạp, chúng ta suy ra bất đẳng thức đúng với mọi 

Số mũ r có thể tổng quát hoá thành số thực bất kỳ như sau: nếu x > −1, thì

với r ≤ 0 hoặc r ≥ 1, và

với 0 ≤ r ≤ 1.

11 tháng 6 2016

ĐKXĐ: \(\hept{\begin{cases}x\ne1\\x^2+x+1\ne0\end{cases}}\)

a/ \(R=1:\left[\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x+1}{x^2+x+1}-\frac{1}{x-1}\right]\)

    \(=1:\left[\frac{x^2+2+\left(x+1\right)\left(x-1\right)-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left(\frac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\)

     \(=1:\left[\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left[\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left(\frac{x}{x^2+x+1}\right)\)

       \(=\frac{x^2+x+1}{x}\)

b/ Ta có: \(R=\frac{x^2+x+1}{x}=3+\frac{\left(x-1\right)^2}{x}>3\)

                          Vậy R > 3

4 tháng 11 2017

Bài 1.

a) Do hai phân thức bằng nhau , ta có :

( x +2)P( x2 - 22) = ( x - 1)Q( x -2)

=( x + 2)P( x - 2)( x + 2) = ( x - 1)Q( x - 2)

Suy ra : P = x - 1 ; Q = ( x + 2)2

b) Do hai phân thức bằng nhau , ta có :

( x + 2)P(x2 - 2x + 1) = ( x - 2)Q( x2 - 1)

= ( x + 2)P( x - 1)2 = ( x - 2)Q( x - 1)( x + 1)

Suy ra : P = ( x - 2)( x + 1) = x2 - x - 2

Q = ( x + 2)( x - 1) = x2 + x + 2

4 tháng 11 2017

Bài 2. a) Do : \(\dfrac{P}{Q}=\dfrac{R}{S}=>PS=QR\)

Xét : ( P + Q)S= PS + QS = QR + QS = Q( R + S)

-> \(\dfrac{P+Q}{Q}=\dfrac{R+S}{S}\)

b) Do : \(\dfrac{P}{Q}=\dfrac{R}{S}=>PS=QR\)

Xét : ( S - R)P = PS - PR = QR - PR = R( Q - P)

-> \(\dfrac{R-S}{R}=\dfrac{Q-P}{P}\)

- > \(\dfrac{R}{R-S}=\dfrac{P}{Q-P}\)

2 tháng 5 2018

khocroikhocroikhocroihiha

2 tháng 5 2018

Câu 1 :

a) Rút gọn P :

\(P=\dfrac{x+1}{3x-x^2}:\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{12x^2}{x^2-9}\right)\)

\(P=\dfrac{x+1}{x\left(3-x\right)}:\left[\dfrac{\left(3+x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{12x^2}{\left(3-x\right)\left(3+x\right)}\right]\)

\(P=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{9+6x+x^2-9+6x-x^2-12x^2}{\left(3-x\right)\left(3+x\right)}\right)\)

\(P=\dfrac{x+1}{x\left(3-x\right)}:\dfrac{12x-12x^2}{\left(3-x\right)\left(x+3\right)}\)

\(P=\dfrac{x+1}{x\left(3-x\right)}.\dfrac{\left(3-x\right)\left(x+3\right)}{12x\left(1-x\right)}\)

\(P=\dfrac{\left(x+1\right)\left(x+3\right)}{12x^2\left(1-x\right)}\)

4 tháng 1 2019

a.

ĐKXĐ: \(x\ne\pm4\)

\(C=\left(\dfrac{4\left(x+4\right)-4\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}\right)\cdot\dfrac{\left(x+4\right)^2}{32}\) có lẽ là nhân

\(\dfrac{4x+16-4x+16}{\left(x-4\right)\left(x+4\right)}\cdot\dfrac{\left(x+4\right)^2}{32}\)

\(=\dfrac{32}{\left(x+4\right)\left(x-4\right)}\cdot\dfrac{\left(x+4\right)^2}{32}=\dfrac{x+4}{x-4}\)

b.

\(C=1\Leftrightarrow x+4=x-4\Leftrightarrow0=-8\left(vo-li\right)\)

c.

\(C=\dfrac{1}{3}\Leftrightarrow3\left(x+4\right)=x-4\Leftrightarrow2x=-16\Leftrightarrow x=-8\)

d.

\(C>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+4>0\\x-4>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+4< 0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>4\\x< -4\end{matrix}\right.\)

Luân Đàotran nguyen bao quanDƯƠNG PHAN KHÁNH DƯƠNG

KHUÊ VŨNguyễn Huy TúAkai HarumaAce LegonaNguyễn Thanh HằngMashiro Shiina giúp mk vs

26 tháng 5 2017

\(x^2+y^2-xy\ge x+y-1\)

\(\Leftrightarrow2x^2+2y^2-2xy\ge2x+2y-2\)

\(\Leftrightarrow2x^2+2y^2-2xy-2x-2y+2\ge0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(x^2-2xy+y^2\right)\ge0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2\ge0\)

Bat ddang thuc cuoiđung,cac phep biendddooii tren la tuong dduong nen BĐT cuoi ddung =>đpcm

xay ra--ddang--thuc khi x=y=1

26 tháng 5 2017

sorry,mk viets saidông BĐT cuoi ddung=> BĐT ddau đungs

NV
24 tháng 10 2019

\(A=\left(x+5\right)^2-62\ge-62\)

\(B=\left(\frac{1}{2}x^2+1-\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\)

\(C=\left(x-3y+2\right)^2+\left(x-5\right)^2-9\ge-9\)

\(D=\left(x-y+1\right)^2+\left(y-4\right)^2\ge0\)

\(A=-\left(x-3\right)^2+12\le12\)

\(B=-2x^2-5x+3=-2\left(x+\frac{5}{4}\right)^2+\frac{49}{8}\le\frac{49}{8}\)

\(C=\frac{1}{\left(x-2\right)^2+5}\le\frac{1}{5}\)

15 tháng 6 2017

ĐIỀU KIỆN XÁC ĐỊNH: \(x\ne1\)

\(S=\left(x-3+\dfrac{1}{x-1}\right):\left(x-1-\dfrac{1}{x-1}\right)\)

\(S=\left(\dfrac{x^2-x}{x-1}-\dfrac{3x-3}{x-1}+\dfrac{1}{x-1}\right):\left(\dfrac{x^2-x}{x-1}-\dfrac{x-1}{x-1}-\dfrac{1}{x-1}\right)\)\(S=\left(\dfrac{x^2-x-3x+3+1}{x-1}\right):\left(\dfrac{x^2-x-x+1-1}{x-1}\right)\)\(S=\left(\dfrac{x^2-4x+4}{x-1}\right):\left(\dfrac{x^2-2x}{x-1}\right)\)

\(S=\dfrac{\left(x-2\right)^2}{x-1}.\dfrac{x-1}{x\left(x-2\right)}\)

\(S=\dfrac{\left(x-2\right)^2.\left(x-1\right)}{\left(x-1\right).x.\left(x-2\right)}\)

\(S=\dfrac{x-2}{x}\)

b) ĐỂ S > 5 => \(\dfrac{x-2}{x}>5\)

\(\dfrac{x-2}{x}>\dfrac{5x}{x}\)

\(x-2>5x\)

\(x-5x>2\)

\(-4x>2\)

\(x< -\dfrac{1}{2}\)

VẬY ĐỂ S > 5 THÌ x < \(-\dfrac{1}{2}\)

15 tháng 6 2017

câu b hình như sai thì phải