\(_{\ge}\) a ( a2 + 1 )

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2018

Ta có: \(a^4+1\ge a\left(a^2+1\right)\)

\(\Leftrightarrow a^4+1\ge a^3+a\)

\(\Leftrightarrow a^4-a^3+1-a\ge0\)

\(\Leftrightarrow a^3\left(a-1\right)-\left(a-1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)\left(a^3-1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)^2\left(a^2+a+1\right)\ge0\)Ta thấy \(a^2+a+1=a^2+2a.\dfrac{1}{2}+\dfrac{1}{4}+1-\dfrac{1}{4}=\left(a+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)\(\left(a+\dfrac{1}{2}\right)^2\ge0\) ( với mọi a )

Vậy \(\left(a-1\right)^2\left(a^2+a+1\right)\ge0\) ( với mọi a )

Khi \(x-1\ne0\) hay \(x\ne1\) ( vì \(x^2+1>0\) với mọi x )

Ta có: ( a – b) 2 \(\ge\) 0 => a2 + b2 \(\ge\) 2ab

( b – c)2 \(\ge\) 0 => b2 + c2 \(\ge\) 2bc

( a – c)2 \(\ge\) 0 => a2 + c2 \(\ge\) 2ac

=> 2(a2 + b2 + c2) \(\ge\) 2ab + 2bc + 2ac

=> a2 + b2 + c2 \(\ge\) ab + bc + ac (đpcm )

23 tháng 5 2019

ta có : (a-b)2\(\ge0với\forall a,b\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)(1)

Cm tương tự ta được lần lượt : a2+c2\(\ge2ac\) với \(\forall a,c\)(2)

b2+c2\(\ge2bc\) với \(\forall b,c\)(3)

Cộng vế vế (1), (2)và (3):

a2+b2+c2+a2+b2+c2\(\ge2ab+2ac+2bc\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+bc\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+ac+bc\left(đpcm\right)\)

NV
23 tháng 3 2019

Câu 1: Dùng biến đổi tương đương:

a/ \(3\left(m+1\right)+m< 4\left(2+m\right)\)

\(\Leftrightarrow3m+3+m< 8+4m\)

\(\Leftrightarrow4m+3< 8+4m\)

\(\Leftrightarrow3< 8\) (đúng), vậy BĐT ban đầu là đúng

b/ \(\left(m-2\right)^2>m\left(m-4\right)\)

\(\Leftrightarrow m^2-4m+4>m^2-4m\)

\(\Leftrightarrow4>0\) (đúng), vậy BĐT ban đầu đúng

Câu 2:

a/ \(b\left(b+a\right)\ge ab\)

\(\Leftrightarrow b^2+ab\ge ab\)

\(\Leftrightarrow b^2\ge0\) (luôn đúng), vậy BĐT ban đầu đúng

b/ \(a^2-ab+b^2\ge ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

NV
23 tháng 3 2019

Câu 3:

a/ \(10a^2-5a+1\ge a^2+a\)

\(\Leftrightarrow9a^2-6a+1\ge0\)

\(\Leftrightarrow\left(3a-1\right)^2\ge0\) (luôn đúng)

b/ \(a^2-a\le50a^2-15a+1\)

\(\Leftrightarrow49a^2-14a+1\ge0\)

\(\Leftrightarrow\left(7a-1\right)^2\ge0\) (luôn đúng)

Câu 4:

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)

\(\Rightarrow VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT< 2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)

21 tháng 3 2019

Ý 3 bạn bỏ dòng áp dụng....ta có nhé

\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)

\(\Leftrightarrow\left(\frac{a^2}{4}-2.\frac{a}{2}b+b^2\right)+\left(\frac{a^2}{4}-2.\frac{a}{2}c+c^2\right)+\)\(\left(\frac{a^2}{4}-2.\frac{a}{d}d+d^2\right)+\frac{a^2}{4}\ge0\forall a;b;c;d\)

\(\Leftrightarrow\left(\frac{a}{2}-b\right)+\left(\frac{a}{2}-c\right)+\)\(\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\forall a;b;c;d\)( luôn đúng )

Dấu " = " xảy ra <=> a=b=c=d=0

6) Sai đề

Sửa thành:\(x^2-4x+5>0\)

\(\Leftrightarrow\left(x-2\right)^2+1>0\)

7) Áp dụng BĐT AM-GM ta có:

\(a+b\ge2.\sqrt{ab}\)

Dấu " = " xảy ra <=> a=b

\(\Leftrightarrow\frac{ab}{a+b}\le\frac{ab}{2.\sqrt{ab}}=\frac{\sqrt{ab}}{2}\)

Chứng minh tương tự ta có:

\(\frac{cb}{c+b}\le\frac{cb}{2.\sqrt{cb}}=\frac{\sqrt{cb}}{2}\)

\(\frac{ca}{c+a}\le\frac{ca}{2.\sqrt{ca}}=\frac{\sqrt{ca}}{2}\)

Dấu " = " xảy ra <=> a=b=c

Cộng vế với vế của các BĐT trên ta có:

\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\)

Áp dụng BĐT AM-GM ta có:

\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\le\frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}}{2}=\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)

Dấu " = " xảy ra <=> a=b=c

21 tháng 3 2019

1)\(x^3+y^3\ge x^2y+xy^2\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)

\(\Leftrightarrow x^2-xy+y^2\ge xy\) ( vì x;y\(\ge0\))

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )

\(\Rightarrow x^3+y^3\ge x^2y+xy^2\)

Dấu " = " xảy ra <=> x=y

2) \(x^4+y^4\ge x^3y+xy^3\)

\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)( luôn đúng )

Dấu " = " xảy ra <=> x=y

3) Áp dụng BĐT AM-GM ta có:

\(\left(a-1\right)^2\ge0\forall a\Leftrightarrow a^2-2a+1\ge0\)\(\forall a\Leftrightarrow\frac{a^2}{2}+\frac{1}{2}\ge a\forall a\)

\(\left(b-1\right)^2\ge0\forall b\Leftrightarrow b^2-2b+1\ge0\)\(\forall b\Leftrightarrow\frac{b^2}{2}+\frac{1}{2}\ge b\forall b\)

\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\)\(\forall a;b\Leftrightarrow\frac{a^2}{2}+\frac{b^2}{2}\ge ab\forall a;b\)

Cộng vế với vế của các bất đẳng thức trên ta được:

\(a^2+b^2+1\ge ab+a+b\)

Dấu " = " xảy ra <=> a=b=1

4) \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)

\(\Leftrightarrow\left[a^2-2.a.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[b^2-2.b.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[c^2-2.c.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\ge0\forall a;b;c\)

\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2\)\(+\left(b-\frac{1}{2}\right)^2\)\(+\left(c-\frac{1}{2}\right)^2\ge0\forall a;b;c\)( luôn đúng)

Dấu " = " xảy ra <=> a=b=c=1/2

22 tháng 6 2017


Xét (a10+b10)(a2+b2)-(a8+b8)(a4+b4)
=(a12+a10b2+b10a2+b12)-(a12+a8b4+b8a4+b12)
=a10b2+b10a2-a8b4-b8a4
=a2b2(a8+b8-a6b2-b6a2)....đấy sắp ra rồi, mình đi ngủ đây

10 tháng 3 2015

Ta có (a-b)​​luôn lớn hơn bằng 0 với mọi a, b.
Có (b-c)2 luôn lớn hơn bằng 0 với mọi b,c.
Có (c-a)luôn lớn hơn bằng 0 với mọi c, a.
Suy ra: (a-b)2 + (b-c)2 + (c-a)2 luôn lớn hơn bằng 0 với mọi a, b, c.
=> a- 2ab + b2 + b2 - 2bc + c2 + c2 - 2ac + aluôn lớn hơn bằng 0.
=> 2(a2 + b2 + c2) - 2(ab + bc + ca) luôn lớn hơn bằng 0.
=> 2(a2 + b2 + c2) luôn lớn hơn bằng 2(ab + bc + ca).
=> a2 + b+ cluôn lớn hơn bằng ab + bc + ca.
 

31 tháng 7 2019

\(a,A=4x-x^2+3\)

       \(=-\left(x^2-4x+4\right)+7\)

       \(=-\left(x-2\right)^2+7\le7\forall x\)

Dấu"=" xảy ra<=> \(-\left(x-2\right)^2=0\Leftrightarrow x=2\) 

Vậy......

\(b,B=4-x^2+2x\)

      \(=-\left(x^2-2x+1\right)+5\)

      \(=-\left(x-1\right)^2+5\le5\forall x\)

Dấu"=" xảy ra<=> \(-\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy......

31 tháng 7 2019

B2:

a) ta có: \(a^2+b^2-2ab\ge0\)

\(\Rightarrow\left(a-b\right)^2\ge0\forall a;b\) (luôn đúng)

\(\Rightarrowđpcm\)

b) Ta có: \(a^2+b^2\ge-2ab\)

     \(\Rightarrow\left(a+b\right)^2\ge0\forall a;b\) (luôn đúng)

   \(\Rightarrowđpcm\)

4 tháng 6 2016

a)Sắp xếp:a\(\ge\) b\(\ge\) c\(\ge\) 0

a(a-b)(a-c)+b(b-c)(b-a)+c(c-a)(c-b)

=a(a-b)[(a-b)=(b-c)]-b(a-b)(b-c)=c(a-c)(b-c)

=a(a-b)2+a(a-b)(b-c)-b(a-b)(b-c)+c(a-c)(b-c)

=a(a-b)2+(b-c)(a-b)2+c(a-c)(b-c)\(\ge\) 0

21 tháng 3 2019

\(1,\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\Leftrightarrow x^2-2xy+y^2\ge0\))
\(\Leftrightarrow\left(x+y\right)^2\ge o\)