K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔDAB và ΔDEC có

DA=DE
\(\widehat{ADB}=\widehat{EDC}\)(hai góc đối đỉnh)

DB=DC

Do đó: ΔDAB=ΔDEC

=>\(\widehat{DAB}=\widehat{DEC}\)

ΔDAB=ΔDEC
=>AB=EC

mà \(AH=\dfrac{AB}{2};EK=\dfrac{EC}{2}\)

nên HA=EK

Xét ΔHAD và ΔKED có

HA=KE

\(\widehat{HAD}=\widehat{KED}\)

AD=ED
Do đó: ΔHAD=ΔKED
=>\(\widehat{HDA}=\widehat{KDE}\)

=>\(\widehat{HDA}+\widehat{ADK}=180^0\)

=>H,D,K thẳng hàng

16 tháng 1 2019

A B C E D N M K H

CM : a)Xét t/giác ABC và t/giác ADE

có AB = AD (gt)

  góc EAD = góc BAC (đối đỉnh)

  AC = AE (gt)

=> t/giác ABC = t/giác ADE (c.g.c)

=> ED = BC (hai cạnh tương ứng) (Đpcm)

=> góc E = góc C (hai góc tương ứng)

Mà góc E và góc C ở vị trí so le trong

=> ED // BC (Đpcm)

b) Ta có: t/giác ABC = t/giác ADE (cmt)

=> góc D = góc B (hai góc tương ứng) (1)

Mà góc EDM = góc MDA = góc D/2 (2)

   góc ABN = góc NBC = góc B/2 (3)

Từ (1); (2); (3) => góc EDM = góc NBC

Xét t/giác EMD và t/giác CNB

có ED = BC (cmt)

góc EDM = góc NBC (cmt)

 góc E = góc C (cmt)

=> t/giác EMD = t/giác CNB (g.c.g) (Đpcm)

c) Ta có: t/giác EMD = t/giác CNB (cmt)

=> MD = BN (hai cạnh tương ứng)

Mà MK = KD = MD/2

    BH = HN = BN/2

=> KD = BH 

Từ (1); (2); (3) => góc MDA = góc ABN

Xét t/giác ADK và t/giác ABN

có AD = AB (gt)

 góc MDA = góc ABN (cmt)

 KD = BH (cmt)

=> t/giác ADK = t/giác ABN (c.g.c)

=> góc KAD = góc BAH (hai góc tương ứng)

Do B,A,D là ba điểm thẳng hàng nên góc BAM + góc MAK + góc KAD = 1800

hay góc BAM + góc MAK + góc BAH = 1800

=> ba điểm K, A,H thẳng hàng (Đpcm)

12 tháng 3 2017

câu d vẽ tam giác đều ACO .từ o kẻ đường vuông góc với hk tại p.tam giác  CAH  BẰNG tam giác COP cạnh huyền góc nhọn.                 suy ra CP=AH SUY RA PK=PC=AH.tam giác OKP BẰNG tam giác OCP C.G.C                                                                                              SUY RA GÓC OKC = 15 . GÓC AKC=30 suy ra góc KAC = 180-30-75=75 SUY RA BAK=45

12 tháng 3 2017

góc BAK=45

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

23 tháng 3 2018

giúp mình với

14 tháng 4 2018

Bạn biết câu này rồi đúng ko, bạn giúp mình với mik cũng đang cần gấp câu này cụ thể là câu c

11 tháng 12 2020

HOI KHO ^.^

17 tháng 11 2021

Khó quá

 

7 tháng 3 2017

tự vẽ hình nhé!

2) \(\Delta AEB=\Delta ADC\left(c.g.c\right)\)

=> \(\widehat{ABE}=\widehat{ACD}\)(2 góc2 t/ứ)

Mà \(\widehat{ABE}+\widehat{EBD}=180^o\)(kề bù)

\(\widehat{ACD}+\widehat{DCE}=180^o\)(kề bù)

Nên \(\widehat{EBD}=\widehat{DCE}\)

\(\Delta BKD=\Delta CKE\left(g.c.g\right)\)(đpcm)

3) \(\Delta BKD=\Delta CKE\)(câu 2) => KD = KE (2 cạnh t/ứ)

\(\Delta AKE=\Delta AKD\left(c.c.c\right)\)\(\Rightarrow\widehat{EAK}=\widehat{DAK}\)(2 góc t/ứ)

=> AK là p/g \(\widehat{BAC}\left(đpcm\right)\)

4) Có: KE = KD (\(\Delta CKE=\Delta BKD\))

=> K cách đều E và D

=> K nằm trên đường trung trực của ED  (2)

Cần c/m \(AM⊥BC;AN⊥ED\)

Mà BC // ED (tự c/m) => A,M,N thẳng hàng  (3)

Có N nằm trên đường trung trực của ED  (4)

Từ (2);(3);(4) => A,M,K,N thẳng hàng (đpcm)

7 tháng 3 2017

AI GIÚP MIK DZỚI