Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://vietjack.com/giai-toan-lop-9/bai-14-trang-77-sgk-toan-9-tap-1.jsp
bạn tham khảo ở đây nhé
giả sử: ta có, ABC vuông tại A, góc an-pha là góc B
\(sin\alpha=sinB=\frac{CA}{CB}\)
\(cos\alpha=cosB=\frac{AB}{BC}\)
\(tan\alpha=tanB=\frac{CA}{AB}\)
\(cot\alpha=cotB=\frac{AB}{CA}\)
do đó,
a) \(\frac{sin\alpha}{cos\alpha}=\frac{sinB}{cosB}=\frac{\frac{CA}{BC}}{\frac{AB}{BC}}=\frac{CA}{BC}.\frac{BC}{AB}=\frac{CA}{AB}=tan\alpha\)
b) câu b thì cậu giải tương tự như câu a vậy
Vẽ tam giấc ABC có tan a = AC/AB (1)
suy ra sin a = AC/BC
cos a = AB/BC
suy ra sin a/cos a = AC/BC : AB/BC = AC/AB (2)
Từ 1 và 2 suy ra tan a = sin a / cos a
a) Vẽ \(\Delta ABC\)vuông tại A
Lúc đó \(sina=\frac{AB}{BC}\)
\(sina=\frac{AB}{BC}\)
\(\Rightarrow\frac{sina}{cosa}=\frac{\frac{AB}{BC}}{\frac{AC}{BC}}=\frac{AB}{AC}=tana\left(đpcm\right)\)
b) \(sina=\frac{AB}{BC}\); \(cosa=\frac{AC}{BC}\)
\(\Rightarrow\frac{cosa}{sina}=\frac{\frac{AC}{BC}}{\frac{AB}{BC}}=\frac{AC}{AB}=cota\left(đpcm\right)\)
Ta có:
\(sin=\dfrac{doi}{huyen}\); \(cos=\dfrac{ke}{chuyen}\);\(tan=\dfrac{doi}{ke}\); \(cot=\dfrac{ke}{doi}\)
Dùng cái này làm được hết mấy câu đó.
nếu bn thấy dùng cách của hùng có hới dài thì bn chỉ cần sử dụng cách đó cho 3 ý trên thôi . còn 3 ý dưới bn có thể sử dụng công thức \(sin^2x+cos^2x=1\) vừa chứng minh xong để giải quyết .
\(1+tan^2a=1+\frac{sin^2a}{cos^2a}=\frac{cos^2a+sin^2a}{cos^2a}=\frac{1}{cos^2a}\)
\(1+cot^2a=1+\frac{cos^2a}{sin^2a}=\frac{sin^2a+cos^2a}{sin^2a}=\frac{1}{sin^2a}\)
\(cot^2a-cos^2a=\frac{cos^2a}{sin^2a}-cos^2a=cos^2a\left(\frac{1}{sin^2a}-1\right)=cos^2a\left(\frac{1-sin^2a}{sin^2a}\right)\)
\(=cos^2a.\frac{cos^2a}{sin^2a}=cos^2a.cot^2a\)
Câu cuối đề bài sai
Các BĐT trên chỉ đúng với góc nhọn
a/ \(sina< tana\Leftrightarrow sina< \frac{sina}{cosa}\Leftrightarrow1< \frac{1}{cosa}\Leftrightarrow cosa< 1\) (đúng)
Vậy BĐT ban đầu đúng
b/ \(cosa< cota\Leftrightarrow cosa< \frac{cosa}{sina}\Leftrightarrow sina< 1\) (đúng)