Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Vì các tia phân giác của các góc B và C cắt nhau tại I
\(\Rightarrow\)I là giao của các đường phân giác trong tam giác
\(\Rightarrow\)AI là tia phân giác của góc A
1.
Kẻ: \(ID\perp AB;IE\perp BC;IF\perp AC\)
\(\widehat{IDB}=\widehat{IEB}=90^0\)
\(\widehat{DBI}=\widehat{EIB}\left(gt\right)\)
BI cạnh huyền chung
⇒ ∆IDB = ∆IEB (cạnh huyền, góc nhọn)
Suy ra: ID = IE (hai cạnh tương ứng) (1)
Xét hai tam giác vuông IEC và IFC, ta có ;
\(\widehat{IEC}=\widehat{IFC}=90^0\)
\(\widehat{ECI}=\widehat{FCI}\left(gt\right)\)
CI canh huyền chung
Suy ra: ∆ IEC = ∆IFC (cạnh huyền, góc nhọn)
Suy ra: IE = IF (hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra: ID = IF
Xét hai tam giác vuông IDA và IFA, ta có:
\(\widehat{IDA}=\widehat{IFA}=90^0\)
ID = IF (chứng minh trên)
AI cạnh huyền chung
Suy ra: ∆IDA = ∆IFA (cạnh huyền, cạnh góc vuông)
Suy ra\(\widehat{DAI}=\widehat{FAI}\) (hai góc tương ứng)
Vậy AI là tia phân giác của \(\widehat{A}\)
góc BIH=90 độ-góc IBH=90 độ-1/2*góc B
góc CID=góc IAC+góc ICA=90 độ-1/2*góc B
=>góc BIH=góc CID
Kẻ IM\(\perp\)BC tại M
Xét ΔBHI vuông tại H và ΔBMI vuông tại M có
BI chung
\(\widehat{HBI}=\widehat{MBI}\)
Do đó: ΔBHI=ΔBMI
=>IH=IM
Xét ΔIMC vuông tại M và ΔIKC vuông tại K có
CI chung
\(\widehat{ICM}=\widehat{ICK}\)
Do đó: ΔIMC=ΔIKC
=>IM=IK
=>IH=IK
Xét ΔAHI vuông tại H và ΔAKI vuông tại K có
AI chung
IH=IK
Do đó: ΔAHI=ΔAKI
=>\(\widehat{HAI}=\widehat{KAI}\)
=>AI là phân giác của góc BAC