K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2024

A, cm AE=CG

Xét hình bình hành ABCD có:

điểm E và G lần lượt là tđ của AB và CG(gt)

=> AE=1/2AB

CG=1/2DC

Mà AB=DC( tính chất hbh)

=> AE=CG (đpcm)

B, cm tam giác AEH = tam giác CGF

Xét tam giác AEH và tam giác CGF có:

- AE=CG (cmt)

- góc HAE = góc FCG ( tính chất hbh)

- AH=CF ( học sinh tự chứng minh)

=> tam giác AEH = tam giác CGF ( c.g.c)(đpcm)

24 tháng 2 2020

A B C D E F G H

a) Xét tam giác  ADB có: 

\(\frac{AE}{AB}=\frac{AH}{AD}\left(gt\right)\)

\(\Rightarrow HE//DB\left(1\right)\)( định lý Ta-let đảo )

Xét tam giác CDB có:

\(\frac{CF}{CB}=\frac{CG}{CD}\left(gt\right)\)

\(\Rightarrow GF//BD\left(2\right)\)

Từ (1) và (2) \(\Rightarrow HE//GF\)

CMTT\(HG//EF\)( cùng // AC)

Xét tứ giác EFGH có:

\(\hept{\begin{cases}HE//GF\left(cmt\right)\\HG//EF\left(cmt\right)\end{cases}\Rightarrow EFGH}\)là hình bình hành (dhnb)

b) 

Đặt\(\frac{AE}{AB}=\frac{AH}{AD}=\frac{CF}{CB}=\frac{CG}{CD}=k\)

Xét tam giác ADB có:

\(HE//BD\left(gt\right)\)

\(\Rightarrow\frac{HE}{BD}=\frac{AE}{AB}\)( hệ quả của định lý Ta-let)

\(\Rightarrow\frac{HE}{BD}=k\)( vì \(\frac{AE}{AB}=k\))

\(\Rightarrow HE=k.BD\)

Xét tam giác ABC có:

\(EF//AC\left(cmt\right)\)

\(\Rightarrow\frac{EF}{AC}=\frac{BE}{BA}\)( hệ quả của định lý Ta-let)

\(\Rightarrow\frac{EF}{AC}=\frac{AB-AE}{BA}=1-k\)

\(\Rightarrow EF=\left(1-k\right)AC\)

\(P_{EFGH}=2\left(HE+EF\right)\)

\(=2\left[k.BD+\left(1-k\right)AC\right]\)

\(=2AC\)không đổi  ( AC=BD do ABCD là hình chữ nhật )

Vậy chu vi của hbh EFGH có giá trị không đổi 

25 tháng 2 2020

bạn bảo châu ơi

a: AE=EB=AB/2

CG=GD=CD/2

mà AB=CD

nên AE=EB=CG=GD

AH=HD=AD/2

BF=FC=BC/2

mà AD=BC

nên AH=HD=BF=FC

b: Xét ΔAHE và ΔCFG có

AH=CF

góc A=góc C

AE=CG

=>ΔAHE=ΔCFG

c: Xét ΔEBF và ΔGDH có

EB=GD

góc B=góc D

BF=DH

=>ΔEBF=ΔGDH

=>GH=EF

d: Xét tứ giác EHGF có

EH=FG

EF=GH

=>EHGF là hình bình hành

 1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc...
Đọc tiếp

 

1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.

2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.

3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN

4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.

5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3

0
31 tháng 3 2016

bài của bạn gần giống bài của mình

13 tháng 11 2018

ghen j đồng bào

2 tháng 12 2015

Số đo một góc trong lục giác đều là :\(180\times\left(6-2\right):6=720:6=120\left(độ\right)\)

ABCD là hình thoi =>AB=BC=CD=AD hay 1/2AB=1/2BC=1/2CD=1/2AD

Tam giác AHE có AH=AE (AH=1/2AD;AE=1/2AB)

=> Tam giác AHE cân . Mà A =60 (độ)

=> Tam giác AHE đều nên AHE=AEH=60 (độ)

Mặt khác góc DHE và góc HEB lần lượt kề bù vs AHE và AEH

=>DHE=HEB=120 (độ)

C/m tương tự ta có : HGF=BFG=120 (độ)

Lại có : ABCD là hình thoi có A =60 =>C=60 và D=B=120 (độ)

Lục giác HEBFGD có số đo mỗi góc bằng 120(độ) (cmt)

=> HEBFGD là lục giác đều

....................Đpcm

Hay cách khác cậu có thể c/m lục giác đều bằng cách c/m 6 cạnh bằng nhau thì sẽ dễ và nhanh hơn cách làm này,đương nhiên mk cux pit c/m cách lm đó n mk k tkick z pn tham khảo cách làm này na mặc dù nó hơi dài .!!!

F= \(-\frac{1}{2}x^2\)- 2x -6G=(x-1)(x+2)-5CMR đa thức bậc 2 luôn dương hoặc luôn âmBài 1: Cho HBH ABCD. Lấy các điểm E,F,H,G lần lượt trên AB,BC,BC và DA sao cho AE=CH, BF=DG. CMR các tứ giác AECH, BFDG, AGCF, EFHG là HBH và AC,BD,EH,FG cắt nhau tại trung điểm mỗi đoạn thẳng đó.Bài 2: Cho HBH ABCD. Gọi E,F lần lượt là trung điểm của AB và AD. CF và CE cắt BD lần lượt tại M và N. CM DM = MN = NBBài 3: Cho tam giác ABC,...
Đọc tiếp

F= \(-\frac{1}{2}x^2\)- 2x -6

G=(x-1)(x+2)-5

CMR đa thức bậc 2 luôn dương hoặc luôn âm

Bài 1: Cho HBH ABCD. Lấy các điểm E,F,H,G lần lượt trên AB,BC,BC và DA sao cho AE=CH, BF=DG. CMR các tứ giác AECH, BFDG, AGCF, EFHG là HBH và AC,BD,EH,FG cắt nhau tại trung điểm mỗi đoạn thẳng đó.

Bài 2: Cho HBH ABCD. Gọi E,F lần lượt là trung điểm của AB và AD. CF và CE cắt BD lần lượt tại M và N. CM DM = MN = NB

Bài 3: Cho tam giác ABC, gọi M,N,q lần lượt là trung điểm của MQ,BQ,MC. CM tứ giác IJKN là HBH

Bài 4: Cho tam giác ABC, trung tuyên BD = 4cm. Gọi E và F theo thứ tự là trung điểm của CD và BC. GỌi G là giao điểm của EF và AB. Tính độ dài EG.

Các bạn giải theo chương trình lớp 8 HKI, viết ra giấy r gửi qua FB cho mình, bạn nào nhanh và đúng nhất nhận 100k từ mk qua FB nha. Hạn cuối chiều nay

Link FB: https://www.facebook.com/thaison.nguyenvu.79

1
14 tháng 8 2020

Ta có:

a) \(F=-\frac{1}{2}x^2-2x-6=-\frac{1}{2}\left(x^2+4x+4\right)-4\)

\(=-\frac{1}{2}\left(x+2\right)^2-4\le-4< 0\left(\forall x\right)\)

=> F luôn âm với mọi x

b) \(G=\left(x-1\right)\left(x+2\right)-5=x^2+x-2-5\)

\(=x^2+x-7=\left(x^2+x+\frac{1}{4}\right)-7-\frac{1}{4}=\left(x+\frac{1}{2}\right)^2-\frac{29}{4}\)

Ko thể xác định G luôn âm hay dương