Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Xét ΔADN vuông tại N và ΔCBM vuông tại M có
AD=CB
góc ADN=góc CBM
DO đó: ΔADN=ΔCBM
=>DN=BM và AN=CM
b: Xet tứ giác AMCN có
AN//CM
AN=CM
Do đó: AMCN là hình bình hành
c: Gọi O là giao của AC và BD
=>O là trung điểm của AC
Xet ΔAKC có AN/AK=AO/AC
nên NO//KC
=>KC//BD
Xét ΔBAK có
BN vừa là đường cao, vừa là trung tuyến
nên ΔBAK cân tại B
=>BA=BK=DC
Xét tứ giác BDKC có
KC//BD
DC=BK
Do đo; BDKC là hình thang cân
Bài 2:
a: Xét ΔADN vuông tại N và ΔCBM vuông tại M có
AD=CB
góc ADN=góc CBM
DO đó: ΔADN=ΔCBM
=>DN=BM và AN=CM
b: Xet tứ giác AMCN có
AN//CM
AN=CM
Do đó: AMCN là hình bình hành
c: Gọi O là giao của AC và BD
=>O là trung điểm của AC
Xet ΔAKC có AN/AK=AO/AC
nên NO//KC
=>KC//BD
Xét ΔBAK có
BN vừa là đường cao, vừa là trung tuyến
nên ΔBAK cân tại B
=>BA=BK=DC
Xét tứ giác BDKC có
KC//BD
DC=BK
Do đo; BDKC là hình thang cân
Tạm kí hiệu đồng dư là \(\exists\)
Với a2+b2+c2 chẵn hiển nhiên có điều phải chứng minh
Với a2+b2+c2 lẻ, xét 2 trường hợp
TH1: trong 3 số a,b,c có 1 số lẻ, 2 số chẵn giả sử số lẻ là a
Ta có a2\(\exists\)1(mod 8), do đó để a2+b2+c2\(\exists\)7(mod 8) thì b2+c2\(\exists\)(mod 8)
Vì b,c chẵn nên ta đặt b=2m,c=2n =>4(m2+n2)\(\exists\)6(mod 8)<=>4m2+4n2-6 chia hết cho 8
<=>2(2m2+2n2-3) chia hết cho 8<=>2m2+2n2-3 chia hết cho 4 (chỗ nãy không biết có đúng không) (1)
Ta thấy (1) không thể xảy ra do 2m2+2n2-3 là số lẻ
TH2:a,b,c là 3 số lẻ
Ta có ngay a2\(\exists\)1(mod 8),b2\(\exists\)1(mod 8),c2\(\exists\)1(mod 8)
=>a2+b2+c2\(\exists\)3 (mod 8)
Nói tóm lại a2+b2+c2 không thể đồng dư với 7 modulo 8
a,Áp dụng định lý Py ta go vào tam giác vuông ABC có :
AB^2+AC^2=BC^2
=> AC^2=BC^2 - AB^2
=> AC^2=15^2-9^2=144
=> AC = 12
Diện tích tam giác ABC là: 9.12/2=54