K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2016

theo bất đẳng thức côsi

=>a:b+b:a>_2 căn a:b.b:a=2

8 tháng 5 2016

Ta có \(\frac{a}{b}+\frac{b}{a}\ge2\) 

Cách 1 : Áp dụng bất đẳng thức Cô si ta có 

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\times\frac{b}{a}}\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\left(\text{đ}pcm\right)\) 

Cách 2 : Xét hiệu \(\frac{a}{b}+\frac{b}{a}-2\) (với trường hợp a ,b cùng dấu)

Ta có \(\frac{a}{b}+\frac{b}{a}-2=\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{2ab}{ab}\)

                                 \(=\frac{\left(a^2+b^2-2ab\right)}{ab}\)

                                 \(=\frac{\left(a-b\right)^2}{ab}\)

Vì \(\left(a-b\right)^2\ge0\) dấu = khi \(a-b=0\Leftrightarrow a=b\)

\(a,b>0\Rightarrow ab>0\)

\(\Rightarrow\frac{\left(a-b\right)^2}{ab}\ge0\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\left(\text{đ}pcm\right)\) 

10 tháng 5 2023

Quy đồng mẫu số (nhân cả 2 vế với abc) ta được:

a2c + b2a + c2b ≧  b2c+c2a+a2b

 a2c -abc + b2a - a2b  + c2b - b2c- c2a+abc ≧ 0

-ac(b-a) +ab(b-a) +cb(c-b) -ac(c-b) ≧ 0

-a(c-b)(b-a) +c(b-a)(c-b) ≧ 0

(c-b)(b-a)(c-a) ≧ 0 luôn đúng (vì 0≤a≤b≤c)

Vậy a/b +b/c + c/a ≧ b/a +c/b+a/c

AH
Akai Haruma
Giáo viên
26 tháng 6 2020

Lời giải:

Do $x\geq 2$ nên:

$x-2\geq 0$

$2x-1\geq 2.2-1>0$

Do đó: $(x-2)(2x-1)\geq 0$ (đpcm)

11 tháng 3 2017

a vì a+2>5 =>a+2+(-2)>5+(-2)=>a+2>3

b vì a>3 => a+2>3+2  =>a+2>5

c  vì m>n =>m-n>n-n=>m-n>0

đ vì m-n=0 =>m-n+n>0+n=>m>n

e vì m<n nên m+(-4)<n+(-4) =>m-4<n-4 (1)

  vì -4>-5 => m-4>m-5 (2)

từ (1) và (2) =>m-5<n-4

28 tháng 11 2018

lưu huỳnh oxi đồng

canxi sắt

mặt trời đồng

1+1=3

hok tốt

28 tháng 11 2018

hello Duy

hello Duy

hello Duy

16 tháng 4 2017

sai đề nhé bạn

16 tháng 4 2017

Vậy thì bỏ chứng minh bất phương trình. Bạn giải phần dưới đi