Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
b) đặt A=a^5b-ab^5=a(a^4b-b^5)=a(b(a^4-b^4))=ab... chia hết cho 2 (1)
+) Nếu a,b đồng du khi chia cho 3 thi a-b chia het cho 3 suy ra A chia het cho 3 (2)
+) Nếu a,b ko dong du khi chia cho 3 thi a+b chia het cho 3 suy ra Âchi het cho 3 (3)
Tu (2),(3) suy ra A luon chia het cho 3 (4)
Ma ab(a-b)(a+b)(a^2+b^2) chia het cho 5 (5)
Tu (1),(4),(5) suy ra A chia het cho 2;3;5 Vậy A chia het cho 30
a) \(A=a^3b-ab^3=\left(a^3b-ab\right)-\left(ab^3-ab\right)\)
\(=b.a\left(a^2-1\right)-a\left(b^3-b\right)\)
\(=a\left(a-1\right)\left(a+1\right)b-a\left(b-1\right)b\left(b+1\right)\)
\(Do:\)\(a-1\) \(;\)\(a\) \(;\) \(a+1\) là 3 số liên tiếp nên :
\(\left(a-1\right)a\left(a+1\right)\) \(⋮6\)
Tương tự : \(\left(b-1\right)b\left(b+1\right)\) \(⋮6\)
\(\Rightarrow\) \(A\) \(⋮\)\(6\)
Ta có: (a^5-a)= a(a^4-1)
= a(a^2-1)(a^2+1)
= a(a-1)(a+1)(a^2+1)
= a(a-1)(a+1)(a^2-4+5)
= a(a-1)(a+1)(a-2)(a+2) + 5a(a-1)(a+1)
Do a(a-1)(a+1)(a-2)(a+2) là tích 5 số tự nhiên liên tiếp => chia hết cho 2,3,5 => chia hết cho 2.3.5=30
5a(a-1)(a+1) chia hết cho 2,3,5 => chia hết cho 2.3.5=30
=> a^5-a chia hết cho 30
=> (a^5-a)+(b^5-b)+(c^5-c) chia hết cho 30
Mà a+b+c chia hết cho 30
=> a^5+b^5+c^5 chia hết cho 30
Đặt a - b = x, b - c = y, c - a = z
Ta có: \(x+y+z=0\Leftrightarrow z=-\left(x+y\right)\)
\(x^5+y^5+z^5=\left(x^3+y^3\right)\left(x^2+y^2\right)-x^3y^2-x^2y^3-\left(x+y\right)^5\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)-x^2y^2\left(x+y\right)-\left(x+y\right)^5\)
\(=\left(x+y\right)\left[\left(x^2-xy+y^2\right)\left(x^2+y^2\right)-x^2y^2-\left(x+y\right)^4\right]\)
\(=\left(x+y\right)\left[x^4+x^2y^2-x^3y-xy^3+x^2y^2+y^4-x^2y^2-\left(x^2+2xy+y^2\right)^2\right]\)
\(=\left(x+y\right)\left(x^4+x^2y^2+y^4-x^3y-xy^3-x^4-4x^2y^2-y^4-2x^2y^2-4xy^3-4x^3y\right)\)
\(=\left(x+y\right)\left(-5x^2y^2-5x^3y-5xy^3\right)\)
\(=-5xy\left(x+y\right)\left(xy+x^2+y^2\right)\)
\(=5xyz\left(xy+x^2+y^2\right)\)
\(=5\left(a-b\right)\left(b-c\right)\left(c-a\right)\left[\left(a-b\right)\left(b-c\right)+\left(a-b\right)^2+\left(b-c\right)^2\right]⋮5\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Câu hỏi của trần thị bảo trân - Toán lớp 8 - Học toán với OnlineMath
Câu hỏi trên là c/m \(a^3+b^3+c^3=3abc\)
Vậy thì suy ra được \(a^3+b^3+c^3⋮3abc\)
Mấy câu còn lại tương tự