K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2020

Xét hiệu \(\left(a^3+b^3\right)-\frac{1}{4}\left(a+b\right)^3\) ta có:

\(\left(a^3+b^3\right)-\frac{1}{4}\left(a+b\right)^3=\frac{1}{4}\left[4\left(a^3+b^3\right)-\left(a+b\right)^3\right]\)

\(=\frac{1}{4}\left[4a^3+4b^3-\left(a^3+3a^2b+3ab^2+b^3\right)\right]\)\(=\frac{1}{4}\left(4a^3+4b^3-a^3-3a^2b-3ab^2-b^3\right)\)

\(=\frac{1}{4}\left(3a^3+3b^3-3a^2b-3ab^2\right)\)\(=\frac{3}{4}\left(a^3+b^3-a^2b-ab^2\right)\)

\(=\frac{3}{4}\left[\left(a^3-a^2b\right)+\left(b^3-ab^2\right)\right]\)\(=\frac{3}{4}\left[a^2\left(a-b\right)+b^2\left(b-a\right)\right]\)

\(=\frac{3}{4}\left[a^2\left(a-b\right)-b^2\left(a-b\right)\right]\)\(=\frac{3}{4}\left(a-b\right)\left(a^2-b^2\right)\)\(=\frac{3}{4}\left(a-b\right)^2\left(a+b\right)\)

Vì a và b > 0 \(\Rightarrow a+b>0\)

mà \(\left(a-b\right)^2\ge0\forall a,b\)và \(\frac{3}{4}>0\)

\(\Rightarrow\frac{3}{4}\left(a-b\right)^2\left(a+b\right)\ge0\)

hay \(\left(a^3+b^3\right)-\frac{1}{4}\left(a+b\right)^3\ge0\)\(\Rightarrow a^3+b^3\ge\frac{1}{4}\left(a+b\right)^3\)

12 tháng 3 2020

Ta có:

\(a^3+b^3\ge\frac{1}{4}\left(a+b\right)^3\)

\(\Leftrightarrow4\left(a^3+b^3\right)\ge\left(a+b\right)^3\)

\(\Leftrightarrow4a^3+4b^3\ge a^3+3a^2b+3ab^2+b^3\)

\(\Leftrightarrow3a^3+3b^3-3a^2b-3ab^2\ge0\)

\(\Leftrightarrow a^3-a^2b-ab^2+b^3\ge0\)( chia 2 vế cho 3)

\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2.\left(a+b\right)\ge0\)(Luôn đúng vì a,b>0)

\(\Rightarrowđpcm\)

11 tháng 5 2017

Bài 2: 

\(a^4+b^4\ge a^3b+b^3a\)

\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)

Dấu " = " xảy ra khi a = b

tk nka !!!! mk cố giải mấy bài nữa !11

27 tháng 3 2019

1/Thêm 6 vào 2 vế,ta cần c/m:

\(\left(x^4+1+1+1\right)+\left(y^4+1+1+1\right)\ge8\)

Thật vậy,áp dụng BĐT AM-GM cho cái biểu thức trong ngoặc,ta được:

\(VT\ge4\left(x+y\right)=4.2=8\) (đpcm)

Dấu "=" xảy ra khi x = y = 1 (loại x = y = -1 vì không thỏa mãn x + y = 2)

AH
Akai Haruma
Giáo viên
13 tháng 5 2021

Lời giải:

a) Áp dụng BĐT Cô-si cho các số dương:

$a^3+\frac{1}{8}+\frac{1}{8}\geq \frac{3}{4}a$

$b^3+\frac{1}{8}+\frac{1}{8}\geq \frac{3}{4}b$

$\Rightarrow a^3+b^3+\frac{1}{2}\geq \frac{3}{4}(a+b)=\frac{3}{4}$

$\Rightarrow a^3+b^3\geq \frac{1}{4}$ (đpcm)

Dấu "=" xảy ra khi $a=b=\frac{1}{2}$

b) Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{a^3+b^3}+\frac{3}{ab}=\frac{1}{a^2-ab+b^2}+\frac{1}{ab}+\frac{1}{ab}+\frac{1}{ab}\geq \frac{(1+1+1+1)^2}{a^2-ab+b^2+ab+ab+ab}\)

\(=\frac{16}{(a+b)^2}=16\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=\frac{1}{2}$

5 tháng 11 2017

khó quá

27 tháng 3 2018

dễ mà cô nương

\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)

\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)

ta có 

\(a=-5-b\)

suy ra

\(a^3-b^3=19\left(-5-2b\right)\) " xong "

2, trên mạng đầy

3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)

4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm

5. trên mạng đầy

6 , trên mang jđầy 

Từ a+b+c=6 \(\Rightarrow\)a+b=6-c

Ta có: ab+bc+ac=9\(\Leftrightarrow\)ab+c(a+b)=9

                               \(\Leftrightarrow\)ab=9-c(a+b)

           Mà a+b=6-c (cmt)

                                \(\Rightarrow\)ab=9-c(6-c)

                                \(\Rightarrow\)ab=9-6c+c2

Ta có: (b-a)2\(\ge\)\(\forall\)b, c

  \(\Rightarrow\)b2+a2-2ab\(\ge\)0

  \(\Rightarrow\)(b+a)2-4ab\(\ge\)0

  \(\Rightarrow\)(a+b)2\(\ge\)4ab

Mà a+b=6-c (cmt)

         ab= 9-6c+c2 (cmt)

  \(\Rightarrow\)(6-c)2\(\ge\)4(9-6c+c2)

  \(\Rightarrow\)36+c2-12c\(\ge\)36-24c+4c2

  \(\Rightarrow\)36+c2-12c-36+24c-4c2\(\ge\)0

  \(\Rightarrow\)-3c2+12c\(\ge\)0

  \(\Rightarrow\)3c2-12c\(\le\)0

  \(\Rightarrow\)3c(c-4)\(\le\)0

  \(\Rightarrow\)c(c-4)\(\le\)0

\(\Rightarrow\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}}\)hoặc\(\hept{\begin{cases}c\le0\\c-4\ge0\end{cases}}\)

*\(\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}c\ge0\\c\le4\end{cases}\Leftrightarrow}0\le c\le4}\)

*

15 tháng 4 2019

1. (a+b)^2 ≥ 4ab

<=> a2+2ab+b2≥ 4ab

<=> a2+2ab+b2-4ab≥ 0

<=> a2-2ab+b2≥ 0

<=> (a-b)^2 ≥ 0 ( luôn đúng )

15 tháng 4 2019

2. a^2 + b^2 + c^2 ≥ ab + bc + ca

<=> 2a^2 + 2b^2 + 2c^2 ≥ 2ab + 2bc + 2ca

<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0

<=> (a^2- 2ab+b^2) + (b^2-2bc+c^2) + (c^2-2ca+a^2) ≥ 0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0 ( luôn đúng)