Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.
Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)
\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)
Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)
Từ (2) và (3) ta có đpcm.
Sai thì chịu
Xí quên bài 2 b:v
b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)
Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)
\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)
Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)
Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)
\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
Áp dụng bất đẳng thức Cô-si ta có:
\(\dfrac{a^2}{b^3}+\dfrac{1}{a}+\dfrac{1}{a}\ge\sqrt[3]{\dfrac{a^2}{b^3}.\dfrac{1}{a}.\dfrac{1}{a}}=\dfrac{3}{b}\)
\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\sqrt[3]{\dfrac{c^2}{a^3}.\dfrac{1}{c}.\dfrac{1}{c}}=\dfrac{3}{a}\)
\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\sqrt[3]{\dfrac{c^2}{a^3}.\dfrac{1}{c}.\dfrac{1}{c}}=\dfrac{3}{a}\)
Cộng theo vế ta được:
\(\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{a^2}{a^3}+\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\ge3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{c^2}{a^3}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
\(\frac{a^2}{b^3}+\frac{b^2}{c^3}+\frac{c^2}{a^3}=\frac{1}{b}+\frac{1}{c}+\frac{1}{a}\)
=> \(\frac{a^2}{b^3}+\frac{b^2}{c^3}+\frac{c^2}{a^3}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Ta có: \(\dfrac{a}{1+9b^2}=a-\dfrac{9ab^2}{1+9b^2}\ge a-\dfrac{3ab}{2}\)
\(\Rightarrow\)\(\text{Σ}\dfrac{a}{1+9b^2}\ge a+b+c-\dfrac{3\left(ab+bc+ca\right)}{2}\ge a+b+c-\dfrac{\left(a+b+c\right)^2}{2}=\dfrac{1}{2}\)
(Áp dụng BĐT Cô Si cho 2 số dương, ta có:
\(\text{ }ab+bc+ca\le a^2+b^2+c^2\Rightarrow3\left(\text{ }ab+bc+ca\right)\le\left(a+b+c\right)^2\))
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{3}\)
Bài này đăng nhiều trên OLM rồi, lời giải vắn tắt:
\(VT=\Sigma_{cyc}\frac{a}{1+b^2}=\Sigma_{cyc}\left(a-\frac{ab^2}{1+b^2}\right)=3-\Sigma_{cyc}\frac{ab^2}{1+b^2}\)
\(\ge3-\Sigma_{cyc}\frac{ab}{2}\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=\frac{3}{2}\)
Đẳng thức xảy ra khi a = b = c = 1
Ta có: \(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)(bđt cô - si)
Tương tự ta có: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\);\(\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)
Cộng từng vế của các bđt trên:
\(\frac{a}{1+b^2}\)\(+\frac{b}{1+c^2}\)\(+\frac{c}{1+a^2}\)\(\ge a+b+c-\frac{ab+bc+ca}{2}\)
Dễ c/m: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow3^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow ab+bc+ca\le3\)
\(BĐT\ge3-\frac{3}{2}=\frac{3}{2}\)
hay \(\frac{a}{1+b^2}\)\(+\frac{b}{1+c^2}\)\(+\frac{c}{1+a^2}\)\(\ge\frac{3}{2}\)
(Dấu "="\(\Leftrightarrow a=b=1\))
Áp dụng BĐT cosi ta có
\(\frac{1}{a^3}+\frac{1}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\); \(\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge\frac{3}{b^2c}\); \(\frac{1}{c^3}+\frac{1}{c^3}+\frac{1}{d^3}\ge\frac{3}{c^2d}\)
\(\frac{1}{d^3}+\frac{1}{d^3}+\frac{1}{a^3}\ge\frac{3}{d^2a}\)
Cộng các BĐt trên ta có
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\ge\frac{1}{a^2b}+\frac{1}{b^2c}+\frac{1}{c^2d}+\frac{1}{d^2a}\)(1)
Áp dụng BĐT buniacoxki ta có
\(\left(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\right)\left(\frac{1}{a^2b}+\frac{1}{b^2c}+\frac{1}{c^2d}+\frac{1}{d^2a}\right)\ge \left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\right)^2\)
Kết hợp với (1) ta được ĐPCM
Dấu bằng xảy ra khi a=b=c
Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm
\(\Rightarrow\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(c+a\right)}\ge3\sqrt[3]{\frac{1}{abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
\(\Rightarrow\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(c+a\right)}\ge\frac{3}{\sqrt[3]{abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
Xét \(\frac{3}{\sqrt[3]{abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
Áp dụng bất đẳng thức Cauchy cho 3 bộ thực không âm
\(\left\{\begin{matrix}\sqrt[3]{abc}\le\frac{a+b+c}{3}\\\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{2\left(a+b+c\right)}{3}\end{matrix}\right.\)
Nhân từng vế:
\(\Rightarrow\sqrt[3]{abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{2\left(a+b+c\right)^2}{9}\)
\(\Rightarrow\frac{3}{\sqrt[3]{abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\ge\frac{27}{2\left(a+b+c\right)^2}\)
Mà \(\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(c+a\right)}\ge\frac{3}{\sqrt[3]{abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
\(\Rightarrow\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(c+a\right)}\ge\frac{27}{2\left(a+b+c\right)^2}\) ( đpcm )