K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Lời giải:

Áp dụng BĐT AM-GM:

$A=a^2b^2(a^2+b^2)$

$4A=2ab.2ab(a^2+b^2)\leq \left(\frac{2ab+2ab+a^2+b^2}{3}\right)^3$

$=[\frac{(a+b)^2+2ab}{3}]^3=(\frac{16+2ab}{3})^3$

Mà: 
$2ab\leq 2(\frac{a+b}{2})^2=2(\frac{4}{2})^2=8$

$\Rightarrow 4A\leq (\frac{16+8}{3})^3=512$

$\Rightarrow A\leq 128$

Dấu "=" xảy ra khi $a=b=2$

AH
Akai Haruma
Giáo viên
14 tháng 9 2024

Lời giải:
Áp dụng BĐT AM-GM:

$ab^2-a^2b=ab(b-a)\leq a(1-a)\leq (\frac{a+1-a}{2})^2=(\frac{1}{2})^2=\frac{1}{4}$

Ta có đpcm

Giá trị này đạt tại $b=1; a=\frac{1}{2}$

14 tháng 7 2018

ta có : \(a^8+b^8-a^6b^2-a^2b^6\ne\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\)

\(a^2b^2\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\) cũng có thể âm

\(\Rightarrow\) sai

15 tháng 9 2016

\(Bdt\Leftrightarrow\left(a^2+b^2+c^2\right)\left(\text{∑}\frac{a}{a^2+2b^2+c^2}\right)\ge\frac{3\left(a+b+c\right)}{4}\left(1\right)\)

Ta dùng Bđt Bunhiacopski

\(VT\left(1\right)\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{\text{∑}a^3+2\left(ab^2+bc^2+ca^2\right)+\left(a^2b+b^2c+c^2a\right)}\)

Vậy ta cần chứng minh \(\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{\text{∑}a^3+2\left(ab^2+bc^2+ca^2\right)+\left(a^2b+b^2c+c^2a\right)}\ge\frac{3}{4}\left(2\right)\)

Thật vậy \(\left(2\right)\Leftrightarrow\text{∑}a^3+\left(a^2b+b^2c+c^2a\right)\ge2\left(ab^2+bc^2+ca^2\right)\)

Bđt này luôn đúng theo Cauchy vì \(a^3+c^2a\ge2a^2c\)

-->Đpcm

 

 

15 tháng 9 2016

đề thế này \(\frac{ab^2}{a^2+2b^2+c^2}+\frac{bc^2}{b^2+2c^2+a^2}+\frac{ca^2}{c^2+2a^2+b^2}\le\frac{a+b+c}{4}\) ak

27 tháng 9 2017

Áp dụng BĐT Bu - nhi- a ta có:

+) \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

+) \(\left(a^2+b^2+c^2\right)^2\le\left(a^3+b^3+c^3\right)\left(a+b+c\right)\)

\(\Rightarrow\left(a^2+b^2+c^2\right)\left(a+b+c\right)\le\left(a^3+b^3+c^3\right)\left(a+b+c\right)\)

\(\Leftrightarrow a^2+b^2+c^2\le a^3+b^3+c^3\left(đpcm\right)\)

\(\Rightarrow\) Dấu ''='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=3\\a=b=c\end{matrix}\right.\) \(\Leftrightarrow a=b=c=1\)

28 tháng 8 2016

Tóm tắt :

 \(a\ge0;b\ge0\rightarrow a+b\le\sqrt{2\left(a^2+b^2\right)}\)

Ta có :

\(\left(a-b\right)^2\ge0\)

\(\Rightarrow a^2+b^2-2ab\ge0\)

\(\Rightarrow a^2+b^2\ge2ab\)

\(\Rightarrow2\left(a^2+b^2\right)\ge a^2+b^2+2ab\)

\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Rightarrow a+b\le\sqrt{2\left(a^2+b^2\right)}\)

Vậy \(a+b\le\sqrt{2\left(a^2+b^2\right)}.\)

28 tháng 8 2016

thanh nha

13 tháng 3 2020

Sai đề, check (a;b;c;d) =(1;0;3;0)

P/s: Sao chép lại đề: (Để chắc ăn mình không nhìn nhầm):

"Chứng minh a2-b2+c2-d2>=(a-b+c-d)2

với a, b, c, d>=0"