![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu a)
Ta có a + b \(\ge\)1 => a \(\ge\) 1 - b
Nên a2 + b2 \(\ge\) (1 - b)2 + b2 = 2b2 - 2b + 1 = 2(b2 - 2b.1/2 + 1/4 + 1/2) = 2(b - 1/2)2 + 1 \(\ge\) 1
Câu b) Áp dụng BĐT Bunhiacopxki ta có
(x + y)2 = (1.x + 1.y)2 \(\le\) (12 + 12)(x2 + y2) = 2.1 = 2
Dấu "=" xảy ra <=> x = y
câu1 : cần sửa lại là A2 + B2 \(\ge\frac{1}{2}\)
Ta chứng minh được : (A+B)2 \(\le2.\left(A^2+B^2\right)\) (*)
<=> A2 + B2 + 2A.B \(\le\) 2. (A2 + B2)
<=> 0 \(\le\) A2 + B2 - 2.A.B <=> 0 \(\le\) (A-B)2 luôn đúng => (*) đúng
b) Áp sung câu a => (x+y)2 \(\le\)2.(x2 + y2) = 2 => đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Đề sai, thử với x = -2 là thấy không thỏa mãn.
Giả sử cho rằng với đề là x không âm thì áp dụng BĐT Cauchy:
\(A=\)\(\frac{2x}{3}+\frac{9}{\left(x-3\right)^2}=\frac{x-3}{3}+\frac{x-3}{3}+\frac{9}{\left(x-3\right)^2}+2\)
\(A\ge3\sqrt[3]{\frac{\left(x-3\right).\left(x-3\right).9}{3.3.\left(x-3\right)^2}}+2=3+2=5>1\)
Không thể xảy ra dấu đẳng thức.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)=1+\frac{x}{y}+1+\frac{y}{x}=2+\frac{x}{y}+\frac{y}{x}\)
Áp dụng BĐT cô si ,ta có:
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x\cdot y}{y\cdot x}}=2\)
Vậy ta được đpcm
ta có:
\(a+\frac{1}{a}-2=\left(\sqrt{a}\right)^2+\left(\frac{1}{\sqrt{a}}\right)^2-2\sqrt{a\cdot\frac{1}{a}}=\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)^2\ge0\Rightarrow a+\frac{1}{a}\ge2\)
Vì a và 1/a cùng dấu nên 2 căn (a*1/a) lớn hơn 0 nha
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(a^2+b^2=\frac{a^2}{1}+\frac{b^2}{1}\ge\frac{\left(a+b\right)^2}{1+1}=\frac{1^2}{2}=\frac{1}{2}\left(đpcm\right)\)
Đẳng thức xảy ra <=> a = b
úi xin lỗi bài kia thiếu ._. Đẳng thức xảy ra <=> a=b=1/2 nhé
2. Ta có : a3 + b3 + ab = ( a + b )( a2 - ab + b2 ) + ab
= a2 - ab + b2 + ac = a2 + b2 ( do a+b=1 )
Sử dụng kết quả ở bài trước ta có đpcm
Đẳng thức xảy ra <=> a=b=1/2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(a^2+b^2\right)\ge2ab\)
\(\left(a^2+1\right)\ge2a\)
Do đó: \(\left(a^2+b^2\right)\left(a^2+1\right)\ge4a^2b\)
![](https://rs.olm.vn/images/avt/0.png?1311)
By Bunhiacopski inequilities we EZ to :
\(\left(3a^2+b^2\right)\left(\frac{1}{3}+1\right)\ge\left(a+b\right)^2\)
\(\Rightarrow\left(3a^2+b^2\right)\cdot\frac{4}{3}\ge1\Rightarrow3a^2+b^2\ge\frac{3}{4}\)
Done !
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a+b >= 1 nên (a+b)^2 >= 1
<=> a^2 + b^2 + 2ab >= 1 (1)
Mặt khác (a-b)^2 >= 0
<=> a^2 + b^2 -2ab >= 0 (2)
Cộng (1) với (2) ta có
2a^2 + 2b^2 >= 1
<=> a^2 + b^2 >= 1/2
\(\frac{a^2}{a^4+1}\le\frac{1}{2}\Leftrightarrow a^4+1\ge2a^2\Leftrightarrow\left(a^2-1\right)^2\ge0\left(đúng\right)\)