Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>2a^2+2b^2+2c^2-2ab-2bc-2ac>=0
=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)
Xét hiệu a^2+b^2+c^2-ab-ac-bc=1/2.2(a^2+b^2+c^2-ab-ac-bc)
=1/2(2a^2+2b^2+2c^2-2ab-2ac-2bc)
=1/2[(a^2-2ab+b^2)+(a^2-2ac+c^2)+(b^2-2bc+c^2)]
=1/2.[(a-b)^2+(a-c)^2+(b-c)^2]
vì (a-b)^2+(a-c)^2+(b-c)^2>=0
nên 1/2.[(a-b)^2+(a-c)^2+(b-c)^2]>=0
hay a^2+b^2+c^2-ab-ac-bc >=0<=> a^2+b^2+c^2>=ab+ac+bc
a) `4x-2>5x+1`
`<=>-x>3`
`<=>x<-3`
b) Theo BĐT Cauchy:
`a^2+b^2 >= 2ab`
Tương tự:
`b^2+c^2>=2bc`
`c^2+a^2>=2ca`
Cộng vế với vế: `2(a^2+b^2+c^2) >= 2(ab+bc+ca)`
`<=>a^2+b^2+c^2 >= ab+bc+ca` (ĐPCM)
a, \(4x-2>5x+1\Leftrightarrow-x>3\Leftrightarrow x< -3\)
b, Ta có : \(a^2+b^2+c^2\ge ab+bc+ca\)
\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\ge0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)* luôn đúng *
-Áp dụng BĐT AM-GM ta có:
\(\left\{{}\begin{matrix}\dfrac{1}{4}a^2+b^2\ge ab\\\dfrac{1}{4}a^2+c^2\ge ac\\\dfrac{1}{4}a^2+d^2\ge ad\end{matrix}\right.\)
-Cộng các vế, ta được:
\(\dfrac{3}{4}a^2+b^2+c^2+d^2\ge ab+ac+ad\)
\(\Rightarrow\dfrac{3}{4}a^2+b^2+c^2+d^2+\dfrac{1}{4}a^2\ge ab+ac+ad\) (vì \(\dfrac{1}{4}a^2\ge0\forall a\))
\(\Leftrightarrow a^2+b^2+c^2+d^2\ge ab+ac+ad\left(đpcm\right)\)
-Dấu "=" xảy ra khi \(a=b=c=d=0\)
Đề bài sai, phản ví dụ: \(a=b=0,c=1\)
BĐT này chỉ đúng khi a;b;c là độ dài 3 cạnh của 1 tam giác
Ta có
$$a^2+b^2+c^2-ab-bc-ca=0,$$
hay $$\dfrac{1}{2}\left[(a-b)^2+(b-c)^2 +(c-a)^2\right[ = 0.$$
Mà vế trái luôn không âm \(\forall a,b,c \in \mathbb{R}\), đẳng thức xảy ra khi $a=b=c.$
Vậy ta có điều cần chứng minh.
Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\)
\(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)
Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\)
Đặt \(P=a^2+b^2+c^2+ab+bc+ca\)
\(P=\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{2}\left(a^2+b^2+c^2\right)\)
\(P\ge\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{6}\left(a+b+c\right)^2=6\)
Dấu "=" xảy ra khi \(a=b=c=1\)
ta có : \(a^2+b^2+c^2=ab+bc+ca\)
\(2.\left(a^2+b^2+c^2\right)=2.\left(ab+bc+ca\right)\)
\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}=>\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}=>}a=b=c\)
a2+b2+c2 ≥ ab+bc+ac (1)
Xét hiệu
a2 +b2+c2 -ab-bc-ac ≥ 0
<=> 2a2+2b2+2c2-2ab-2bc-2ac ≥ 0
<=> (a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2) ≥ 0
<=> (a-b)2 +(b-c)2 +(c-a)2 ≥ 0 (luôn đúng với mọi a,b,c)
=> (1) đc cm