Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 3S = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + .....+ 50.51.(52 -49)
= 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 -2.3.4 + .....+ 50.51.52 - 49.50.51
3S = 50.51.52
S = 50.17.52 =44200
\(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{49\cdot50}\\ =1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ =\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{50}\right)\\ =\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{50}\right)\\ =\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)
\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{49}+\dfrac{1}{50}\)
Ta có : \(B\text{=}\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+....+\dfrac{1}{99.100}\)
\(B\text{=}\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(B\text{=}\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{100}\)
\(B\text{=}\dfrac{247}{300}\)
Ta có : \(\dfrac{7}{12}\text{=}\dfrac{175}{300};\dfrac{5}{6}\text{=}\dfrac{250}{300}\)
Vì : \(\dfrac{175}{300}< \dfrac{247}{300}< \dfrac{250}{300}\)
\(\Rightarrowđpcm\)
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}.\text{ CMR : }\frac{7}{12}< A< \frac{5}{6}\)
Ta có :
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}-2.\frac{1}{2}-2.\frac{1}{4}-...-2.\frac{1}{98}\)
\(A=1+...+\frac{1}{100}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{49}\)
\(A=\frac{1}{51}+...+\frac{1}{100}\)
\(\Rightarrow A< \frac{1}{51.25}=\frac{25}{51}< \frac{25}{30}=\frac{5}{6}\) (đpcm)
Và \(A>25.\frac{1}{75}+25.\frac{1}{100}=\frac{7}{12}\)
Ta có : A = 1 / (1.2) + 1 / (3.4) + ... + 1 / (99.100) > 1 / (1.2) + 1 / (3.4) = 1 / 2 + 1 / 12 = 7 / 12 (1)
Lại có : A = 1 / (1.2) + 1 / (3.4) + ... + 1 / (99.100) = (1 - 1 / 2) + (1 / 3 - 1 / 4) + ... + (1 / 99 - 100)
= (1 - 1 / 2 + 1 / 3) - (1 / 4 - 1 / 5) - (1 / 6 - 1 / 7) - ... - (1 / 98 - 1 / 99) - 1 / 100 < 1 - 1 / 2 + 1 / 3 = 5 / 6 (2)
Từ (1) và (2) => 7 / 12 < A < 5 / 6
\(A=\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}=\frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)
Vậy A=49/50
Công thức: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Ta có : 3A = 1.2.3 + 2.3.3 + 3.4.3 + .... + n.( n + 1 ).3
=> 3A = 1.2.( 3 - 0 ) + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + ..... + n.( n + 1 ).[ ( n + 2 ) - ( n - 1 ) ]
=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + n.( n + 1 ).( n + 2 ) - ( n - 1 ).n.( n + 1 )
=> 3A = ( 1.2.3 - 1.2.3 ) + ( 2.3.4 - 2.3.4 ) + .... + [ ( n - 1 ).n.( n + 1 ) - ( n - 1 ).n.( n + 1 ) ] + n.( n + 1 ).( n + 2 )
=> 3A = n.( n + 1 ).( n + 2 )
=> A = \(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)
1
Ta có :A=1/1.2+1/3.4+...+1/99.100=1/2+1/12+...+1/9900
7/12=1/2+1/12
Vì 1/2+1/12<1/2+1/12+...+1/9900
Nên: 7/12<A (1)
Lại có:A=1/1.2+1/3.4+...+1/99.100
=1-1/2+1/3-1/4+...+1/99-1/100
=(1-1/2+1/3)+(-1/4+1/5-1/6)+...+(-1/98+1/99-1/100)
5/6=1-1/2+1/3
vì: 1-1/2+1/3 < (1-1/2+1/3)+(-1/4+1/5-1/6)+...+(-1/98+1/99-1/100)
nên 5/6 < A (2)
Từ (1) và (2) suy ra 7/12<A<5/6
\(D=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}\)
\(=\frac{9}{20}\)
\(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{50.51}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}\)
\(=\frac{1}{3}-\frac{1}{51}\)
\(=\frac{17}{51}-\frac{1}{51}\)
\(=\frac{16}{51}\)