Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,n^2\left(n+1\right)+2n\left(n+1\right)\\ =\left(n+1\right)\left(n^2+2n\right)\\ =n\left(n+1\right)\left(n+2\right)⋮6\\ \Rightarrow n^2\left(n+1\right)+2n\left(n+1\right)⋮6\left(đpcm\right)\)
4. \(A=\left(a^{2012}-a^{2008}\right)+\left(b^{2012}-b^{2008}\right)+\left(c^{2012}-c^{2008}\right)\)
\(=a^{2008}\left(a^4-1\right)+b^{2008}\left(b^4-1\right)+c^{2008}\left(c^4-1\right)\)
\(=a^{2008}\left(a^2-1\right)\left(a^2+1\right)+b^{2008}\left(b^2-1\right)\left(b^2+1\right)+c^{2008}\left(c^2-1\right)\left(c^2+1\right)\)
\(=a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)+b^{2007}\left(b-1\right)b\left(b+1\right)\left(b^2+1\right)+c^{2007}\left(c-1\right)c\left(c+1\right)\left(c^2+1\right)\)
Dễ thấy a-1, a, a+1 là 3 số nguyên liên tiếp nên tồn tại 1 số chia hết cho 2, một số chia hết cho 3 \(\Rightarrow\left(a-1\right)a\left(a+1\right)⋮6\)
Tương tự đối với b và c ta suy ra \(A⋮6\) (1)
Xét các số dư của a cho 5
- Nếu \(a⋮5\) thì \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\)
- Nếu a chia 5 dư 1 thì \(\left(a-1\right)⋮5\) hay \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\)
- Nếu a chia 5 dư 2 hoặc 3 thì \(\left(a^2+1\right)⋮5\) hay \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\)
- Nếu a chia 5 dư 4 thì \(\left(a+1\right)⋮5\) nên \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\)
Như vậy \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\) \(\forall a\in Z_+\)
Tương tự \(\left[b^{2007}\left(b-1\right)b\left(b+1\right)\left(b^2+1\right)\right]⋮5\)
và \(\left[c^{2007}\left(c-1\right)c\left(c+1\right)\left(c^2+1\right)\right]⋮5\)
Do đó \(A⋮5\) (2)
Từ (1) và (2) suy ra \(A⋮30\)
em gửi bài qua fb thầy chữa cho, tìm fb của thầy bằng sđt nhé: 0975705122
a, Xét: A=(n+2)2-(n-2)2
= (n2+4n+4)-(n2-4n+4)
= n2+4n+4-n2+4n-4
= 8n
Ta có: 8n chia hết cho 8
=> A chia hết cho 8 (đpcm)
b, Xét: B=(n+7)2-(n-5)2
= (n2+14n+49)-(n2-10n+25)
= n2+14n+49-n2+10n-25
= 24n+24
Ta có: 24n chia hết cho 24
24 chia hết cho 24
=> 24n+24 chia hết cho 24
=> B chia hết cho 24 (đpcm)
a, \(\left(n+2\right)^2-\left(n-2\right)^2\)
\(=\left(n+2-n+2\right)\left(n+2+n-2\right)\)
\(=4.2n=8n\)
Do đó \(\left(n+2\right)^2-\left(n-2\right)^2\) chia hết cho 8
b,\(\left(n+7\right)^2-\left(n-5\right)^2\)
\(=n^2+14n+49-\left(n^2-10n+25\right)\)
\(=n^2+14n+49-n^2+10n-25\)
\(=24n+24=24\left(n+1\right)\)
Do đó \(\left(n+7\right)^2-\left(n-5\right)^2\) chia hết cho 24
Chúc bạn học tốt!!!