K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2016

a) Đặt: \(b+c=x;c+a=y;a+b=z\)

Có: \(x+y-z=b+c+c+a-a-b=2c\)

=> \(c=\frac{x+y-z}{2}\)

Tương tự ta cũng có:

\(a=\frac{y+z-x}{2};b=\frac{x+z-y}{2}\)

Có: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

=\(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)

\(=\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}-1+\frac{x}{y}+\frac{z}{y}-1+\frac{x}{z}+\frac{y}{z}-1\right)\)

\(=\frac{1}{2}\left[\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+\left(\frac{z}{y}+\frac{y}{z}\right)-3\right]\) (1)

Áp dụng bđt cô si ta có:

\(\frac{y}{x}+\frac{x}{y}\ge2;\frac{z}{x}+\frac{x}{z}\ge2;\frac{z}{y}+\frac{y}{z}\ge2\)

=> \(\left(1\right)\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)

Vậy \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

11 tháng 12 2016

b) Có: \(\frac{a^2}{b+c}+\frac{b+c}{4}=\frac{\left(2a\right)^2+\left(b+c\right)^2}{4\left(b+c\right)}\) (1)

VÌ: \(\left[2a-\left(b+c\right)\right]^2\ge0\)

=> \(\left(2a\right)^2+\left(b+c\right)^2\ge4a\left(b+c\right)\)

=> \(\left(1\right)\ge\frac{4a\left(b+c\right)}{4\left(b+c\right)}=a\)

Hay: \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge a\Rightarrow\frac{a^2}{b+c}\ge a-\frac{b+c}{4}\) (2)

Tương tự ta cũng có: \(\frac{b^2}{c+a}\ge b-\frac{c+a}{4}\) (3)

\(\frac{c^2}{a+b}\ge c-\frac{a+b}{4}\) (4)

Cộng vế với vế (2);(3);(4) ta có:

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge a+b+c-\left(\frac{b+c+c+a+a+b}{4}\right)=\left(a+b+c\right)-\frac{a+b+c}{2}=\frac{a+b+c}{2}\)