\(\frac{a}{b}=\frac{c}{d}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2015

chắc Ngô Tuấn Vũ tưởng mỗi mình nó biết cop. Chúng tôi biết hết rồi nhưng ko bỉ ổi như cậu đâu !          

29 tháng 10 2015

Ta có:

a+c=2b (*1)

2bd=c(b+d) (*2)

Thay (*1) vào (*2) ta có:

(a+c)d=c(b+d)

ad+cd=cb+cd

mà cd=cd

=> ad=cb

=>\(\frac{a}{b}\)\(=\)\(\frac{c}{d}\)(ĐPCM)

9 tháng 2 2018

Ta có 2bd=c(b+d) \(=>\frac{2b}{c}=\frac{b+d}{d}\)

Mà a+c=2b nên \(\frac{a+c}{c}=\frac{b+d}{d}=>\frac{a+c}{b+d}=\frac{c}{d}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a+c}{b+d}=\frac{c}{d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)

Vậy \(\frac{a}{b}=\frac{c}{d}\)

29 tháng 10 2016

Ta có: 2bd = c(b + d)

=> (a + c).d = bc + cd

=> ad + cd = bc + cd

=> ad = bc

=> \(\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

15 tháng 1 2018

Ta có : 2bd = c (b + d )

=) ( a + c ). d = bc + cd

=) ad + cd = bc + cd

=) ad = bc

=) a/b = c/ d ( đpcm)

9 tháng 11 2021

Giải thích các bước giải: Ta có : a+c=2b, 2bd=c(b+d)

-> 2bd=(a+c)d =c(b+d)

-> ad+cd = bc+cd

-> ad=bc

-> a/b=c/d

9 tháng 11 2021

ui cảm ơn bạn

4 tháng 8 2015

Ta có:

a+c=2b (*1)

2bd=c(b+d) (*2)

Thay (*1) vào (*2) ta có:

(a+c)d=c(b+d)

ad+cd=cb+cd

mà cd=cd

=> ad=cb

=> \(\frac{a}{b}=\frac{c}{d}\)

 

 

4 tháng 8 2015

Từ a+c=2b=> 2bd=(a+c)b=c(b+d)

ab+bc=cb+cd

ab+bc-cb-cd=0

ab-cd=0

ab=cd => a/b=c/d (đpcm)

19 tháng 6 2019

Ta có: a + c = 2b

=> d(a + c) = 2bd

mà c(b + d) = 2bd

=> d(a + c) = c(b + d)

=> ad + cd = bc + cd

=> ad = bc

=> \(\frac{a}{b}=\frac{c}{d}\)

19 tháng 6 2019

Ta có: 2bd = c(b + d)

Mà: a + c = 2b

=> (a + c)d = c(b + d)

=> ad + cd = cb + cd

=> ab = cd

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\) (đpcm0

2 tháng 10 2016

2bd=c(b+d)

<=>(a+c)d=bc+cd

<=>ad+cd=bc+cd

<=>ad=bc

<=>\(\frac{a}{b}=\frac{c}{d}\)

<=>\(\frac{a}{c}=\frac{b}{d}\) <=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)<=>\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (đpcm)

11 tháng 2 2018

Ta có: 2bd=c.(b+d)
Mà a+c=2b
\(\Rightarrow\)d.(a+c)=c.(b+d)

\(\Rightarrow\frac{c}{d}=\frac{a+c}{b+d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{c}{d}=\frac{a+c}{b+d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)