
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) 9x^2+12x-15
=-(9x^2-12x+4+11)
=-[(3x-2)^2+11]
=-(3x-2)^2 - 11.
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x.
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x.
b) -5 – (x-1)*(x+2)
= -5-(x^2+x-2)
=-5- (x^2+2x.1/2 +1/4 - 1/4-2)
=-5-[(x-1/2)^2 -9/4]
=-5-(x-1/2)^2 +9/4
=-11/4 - (x-1/2)^2
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x.
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x.
Bài 2)
a) x^4+x^2+2
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x
suy ra x^4+x^2+2 >=2
Hay x^4+x^2+2 luôn dương với mọi x.
b) (x+3)*(x-11) + 2003
= x^2-8x-33 +2003
=x^2-8x+16b + 1954
=(x-4)^2 + 1954 >=1954
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến

b) Đặt $A=$ $(a-1).(a+2) +12$
$ = a^2+2a-a-2+12$
$ = a^2+a+10$
$ = a^2+a+1+9$
Giả sử $ A \vdots 9$
$\to a^2+a+1+9 \vdots 9$
$\to a^2+a+1 \vdots 9$
$\to 4a^2+4a+4 \vdots 9$ hay : $a^2+4a+4 \vdots 3$
$\to (2a+1)^2 + 3 \vdots 3$
$\to (2a+1)^2 \vdots 3 \to 2a+1 \vdots 3$
Mà $3$ là số nguyên tố nên :
$(2a+1)^2 \vdots 9$
Do đó : $(2a+1)^2 + 3 \not \vdots 9$
Từ đs suy ra $A$ không là bội của $9$.
Câu b) em làm tương tự em tách thành chia hết cho $7$ vì $7$ là số nguyên tố.
a) Trường hợp 1: a=3k(k∈N)
Suy ra: \(\left(a-1\right)\left(a+2\right)+12=\left(3k-1\right)\left(3k+2\right)+12\)
Vì 3k+1 và 3k+2 không chia hết cho 3 nên \(\left(3k-1\right)\left(3k+2\right)+12⋮̸3\)
\(\Leftrightarrow\left(3k-1\right)\left(3k+2\right)+12⋮̸9\)(1)
Trường hợp 2: a=3k+1(k∈N)
Suy ra: \(\left(a-1\right)\left(a+2\right)+12=\left(3k+1-1\right)\cdot\left(3k+1+2\right)+12\)
\(=3k\cdot\left(3k+3\right)+12\)
\(=9k^2+9k+12⋮̸9\)(2)
Trường hợp 3: a=3k+2(k∈N)
Suy ra: \(\left(a-1\right)\left(a+2\right)+12=\left(3k+2-1\right)\left(3k+2+2\right)+12\)
\(=\left(3k+1\right)\left(3k+4\right)+12⋮̸9\)(3)
Từ (1), (2) và (3) suy ra ĐPCM

\(A=\frac{6a+2b}{2a+a+b}+\frac{3a+b}{2a+a+b}=\frac{9a+3b}{3a+b}=3\)