Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,VT=9+4\sqrt{5}=\sqrt{5^2}+2.2\sqrt{5}+2^2=\left(\sqrt{5}+2\right)^2=VP\left(dpcm\right)\)
\(b,\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(\Leftrightarrow\sqrt{9-4\sqrt{5}}=\sqrt{5}-2\)
Ta có : \(VT=\sqrt{9-4\sqrt{5}}=\sqrt{\sqrt{5^2}-2.2\sqrt{5}+2^2}=\sqrt{\left(\sqrt{5}-2\right)^2}=\left|\sqrt{5}-2\right|=\sqrt{5}-2=VP\left(dpcm\right)\)
a) \(9+4\sqrt{5}=4+4\sqrt{5}+5=2^2+2\cdot2\sqrt{5}+\left(\sqrt{5}\right)^2=\left(\sqrt{5}+2\right)^2\left(ĐPCM\right)\)
a) \(9+4\sqrt{5}=\left(\sqrt{5}\right)^2+2.\sqrt{5}.2+2^2=\left(\sqrt{5}+2\right)^2\left(đpcm\right)\)
b)\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}=\sqrt{5}-2-\sqrt{5}=-2\left(đpcm\right)\)
c)\(\left(4-\sqrt{7}\right)^2=16-8\sqrt{7}+7=23-8\sqrt{7}\left(đpcm\right)\)
d)\(\sqrt{23+8\sqrt{7}}-\sqrt{7}=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}=4+\sqrt{7}-\sqrt{7}=4\left(đpcm\right)\)
\(a,\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
Ta có
:\(VT=\sqrt{9-4\sqrt{5}}-\sqrt{5}\)
\(=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{5}\)
\(=|2-\sqrt{5}|-\sqrt{5}\)
\(=\sqrt{5}-2-\sqrt{5}\)
\(=-2=VP\left(đpcm\right)\)
\(b,\frac{\sqrt{2}+1}{\sqrt{2}-1}=3+2\sqrt{2}\)
Ta có:
\(VT=\frac{\sqrt{2}+1}{\sqrt{2}-1}\)
\(=\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)
\(=\frac{2+\sqrt{2}+\sqrt{2}+1}{\sqrt{2}^2-1^2}\)
\(=\frac{3+2\sqrt{2}}{2-1}\)
\(=3+2\sqrt{2}=VP\left(đpcm\right)\)
c,Bạn xem lại đề
\(d,\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}=8\)
Ta có:
\(VT=\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}\)
\(=\sqrt{\frac{2^2}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{2^2}{\left(2+\sqrt{5}\right)^2}}\)
\(=\frac{2}{|2-\sqrt{5}|}-\frac{2}{|2+\sqrt{5}|}\)
\(=\frac{2\left(2+\sqrt{5}\right)}{\left(\sqrt{5}-2\right)\left(2+\sqrt{5}\right)}-\frac{2\left(\sqrt{5}-2\right)}{\left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)}\)
\(=\frac{4+2\sqrt{5}-2\sqrt{5}+4}{\sqrt{5}^2-2^2}\)
\(=\frac{8}{5-4}\)
\(=8=VP\left(đpcm\right)\)
9-\(4\sqrt{5}=5-4\sqrt{5}+4=\left(\sqrt{5}-2\right)^2\\ \)
=>\(\sqrt{9-4\sqrt{5}}=\left(2-\sqrt{5}\right)\)=> điều cần phải chứng minh
a) Ta có: \(9+4\sqrt{5}\)
\(=5+2\cdot\sqrt{5}\cdot2+4\)
\(=\left(\sqrt{5}+2\right)^2\)(đpcm)
b) Ta có: \(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)
\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}\)
\(=\sqrt{5}-2-\sqrt{5}\)
=-2(ddpcm)
c) Ta có: \(\left(4-\sqrt{7}\right)^2\)
\(=16-2\cdot4\cdot\sqrt{7}+7\)
\(=23-8\sqrt{7}\)(đpcm)
d) Ta có: \(\sqrt{17-12\sqrt{2}}+2\sqrt{2}\)
\(=\sqrt{9-2\cdot3\cdot2\sqrt{2}+8}+2\sqrt{2}\)
\(=\sqrt{\left(3-2\sqrt{2}\right)^2}+2\sqrt{2}\)
\(=3-2\sqrt{2}+2\sqrt{2}=3\)(đpcm)
\(a.VT=4+4\sqrt{5}+5=2^2+4\sqrt{5}+\sqrt{5}^2=\left(2+\sqrt{5}\right)^2=VP\)
\(b.\) Dựa vào câu a ta có: \(9-4\sqrt{5}=\left(\sqrt{5}-2\right)^2\)
\(VT=\left|\sqrt{5}-2\right|-\sqrt{5}=\sqrt{5}-2-\sqrt{5}=-2=VP\)
\(c.VT=16-8\sqrt{7}+7=4^2-8\sqrt{7}+\sqrt{7}^2=\left(4-\sqrt{7}\right)^2=VP\)
\(d.\)
Ta có: \(17-12\sqrt{2}=8-12\sqrt{2}+9=\left(2\sqrt{2}\right)^2-12\sqrt{2}+3^2=\left(2\sqrt{2}-3\right)^2\)
\(VT=\left|2\sqrt{2}-3\right|+2\sqrt{2}=3-2\sqrt{2}+2\sqrt{2}=3=VP\)
\(\left(4-\sqrt{7}\right)^2=4^2-2\cdot4\cdot\sqrt{7}+7\)
\(=16-8\sqrt{7}+7=23-8\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)
\(=\sqrt{5-2\cdot\sqrt{5}\cdot2+4}-\sqrt{5}\)
\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}\)
\(=\left|\sqrt{5}-2\right|-\sqrt{5}\)
\(=\sqrt{5}-2-\sqrt{5}=-2\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}+1}\)
\(=\dfrac{\sqrt{3-2\cdot\sqrt{3}\cdot1+1}}{\sqrt{2}+1}\cdot\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\)
\(=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}+1}\cdot\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\)
\(=\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=\dfrac{3-1}{2-1}=2\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-\dfrac{6\sqrt{6}}{3}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\left(\dfrac{1}{2}\sqrt{6}-2\sqrt{6}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\dfrac{1}{2}-2=-\dfrac{3}{2}=-1,5\)
Câu a thì c/m được câu b đề yêu cầu gì thế.
a) Xét VP được :
\(\left(\sqrt{5}+2\right)^2\) sử dụng hàng đẳng thức số 1 :
\(\left(\sqrt{5}+2\right)^2=\sqrt{5}^2+2\cdot\sqrt{5}\cdot2+2^2=5+4\sqrt{5}+4=9+4\sqrt{5}=VT\)
Vậy \(\left(\sqrt{5}+2\right)^2=9+4\sqrt{5}\)
a) \(\sqrt{9+4\sqrt{5}}=\left(\sqrt{5}+2\right)^2\)
Ta biến đổi vế phải :
\(VP=\left(\sqrt{5}+2\right)^2=\left(\sqrt{5}\right)^2+2.\sqrt{5}.2+2^2\) = \(5+4\sqrt{5}+4=9+4\sqrt{5}=VT\)
=> Ta có VT= VP <=> VP = VT
b) Thiếu đề =.= sao làm