Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=25.3.(42003+42002+22001+.......+42+4+1)+25
B=25.[4.(42003+42002+22001+.......+42+4+1)-(42003+42002+22001+.......+42+4+1)]+25
B=25.[(42004+42003+42002+22001+.......+42+4)-(42003+42002+22001+.......+42+4+1)]+25
B=25.(42004-1)+25
B=25.(42004-1+1)
B=25.42004
B=25.4.42003
B=100.42003
\(\Rightarrow\)B chia hết cho 100
A=75(4^2004+4^2003+...+4^24+1)+25= 75(4^2004+4^2003+...+4^24)+75+25=
=75(4^2004+4^2003+...+4^24)+100= 75*4(4^2003+4^2002...+4^23)+100=
= 300(4^2003+4^2002...+4^23)+100= 100[3(4^2003+4^2002...+4^23)+1] chia het cho 100.
M=75.(42013+42012+…..+43+42+1)+25
=75.42013+75.42012+……+75.43+75.42+75.1+25
=75.42013+75.42012+……+75.43+75.42+75+25
=75.42013+75.42012+……+75.43+75.42+100
=3.(25.4).42012+3.(25.4).42011+…..+3.(25.4).42+3.(25.4).4+100
=3.100.42012+3.100.42011+…..+3.100.42+3.100.4+100
=100.(3.42012+3.42011+…..+3.42+3.4+1)
Vì 100 chia het 100 nen 100.(3.42012+3.42011+…..+3.42+3.4+1) chia het 100
Vậy M chia het 100
\(A=75\left[4\left(4^{2006}+4^{2005}+...+4+1\right)+1\right]+25\)
\(A=300\left(4^{2006}+4^{2005}+...+4+1\right)+75+25\)
\(A=300\left(4^{2006}+4^{2005}+...+4+1\right)+100\)
\(A=100\left[3\left(4^{2006}+4^{2005}+...+4+1\right)+1\right]⋮100\)
Đặt A = 42016 + 42015 + ... + 42 + 4 + 1
=> A = 4.k + 1 (k \(\in\)N*)
P = 75.(4.k + 1) + 25
P = 75.4k + 75 + 25
P = 300.k + 100
P = 100.(3.k + 1) chia hết cho 100 (đpcm)