Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(7^100+7^99+7^98)
= 7^98(7^2+7+1)
= 7^98 x 57 chia hết cho 57
(7100+799+798)
=798(799+798)
=798.57 chia hết cho 57
**** nha
a. 5100 - 599 + 598
= 598.(52 - 5 + 1)
= 598.(25 - 5 + 1)
= 598.21
= 598.3.7 chia hết cho 7
Vậy 5100 - 599 + 598 chia hết cho 7 (Đpcm).
b. 729 + 728 - 727
= 727.(72 + 7 - 1)
= 727.(49 + 7 - 1)
= 727.55
= 727.5.11 chia hết cho 11
Vậy 729 + 728 - 727 chia hết cho 11 (Đpcm).
a. 5100 - 599 + 598
= 598.(52 - 5 + 1)
= 598.(25 - 5 + 1)
= 598.21
= 598.3.7 chia hết cho 7
Vậy 5100 - 599 + 598 chia hết cho 7 (Đpcm).
b. 729 + 728 - 727
= 727.(72 + 7 - 1)
= 727.(49 + 7 - 1)
= 727.55
= 727.5.11 chia hết cho 11
Vậy 729 + 728 - 727 chia hết cho 11 (Đpcm).
A=7+72+73+...+72016
=(7+72)+(73+74)+...+(72015+72016)
=7.(1+7)+73.(1+8)+...+72015.(1+7)
=7.8+73.8+...+72015.8
=8.(7+73+...+72015) chia hết cho 8 (đpcm)
A=7+72+73+...+72016
=(7+72+73)+...+(72014+72015+72016)
=7.(1+7+72)+...+72014.(1+7+72)
=7.57+...+72014.57
=57.(7+...+72014) chia hết cho 57 (đpcm)
CMR: \(5^{100}-5^{99}+5^{98}\)chia hết cho 7
Ta có: \(5^{100}-5^{99}+5^{98}\)
\(=5^{98}.5^2-5^{98}.5+5^{98}\)
\(=5^{98}.\left(5^2-5-1\right)\)
\(=5^{98}.21\)
\(=5^{98}.3.7\)
=> \(5^{100}-5^{99}+5^{98}\)chia hết cho 7
\(5^{100}-5^{99}+5^{98}\)
\(=5^{98}.\left(5^2-5+1\right)\)
\(=5^{98}.21\)
\(=5^{98}.3.7\)chia hết cho 7
Ta có : T = 1 + 7 + 72 + ....... + 798 + 799
=> T = (1 + 72) + (7 + 73) + ...... + (796 + 798) + (797 + 799)
=> T = 1.(1 + 49) + 7.(1 + 49) + ...... + 796(1 + 49) + 797.(1 + 49)
=> T = 50 + 7.50 + ...... + 79650 + 797.50
=> T = 50.(1 + 7 + ..... + 796 + 797) chia hết cho 50
\(A=7+7^2+7^3+...+7^{119}+7^{120}\)
\(\Rightarrow7A=7^2+7^3+7^4+...+7^{120}+7^{121}\)
\(\Rightarrow7A-A=\left(7^2+7^3+...+7^{120}+7^{121}\right)-\left(7+7^2+...+7^{119}+7^{120}\right)\)
\(\Rightarrow6A=7^2+7^3+...+7^{120}+7^{121}-7-7^2-...-7^{119}-7^{120}\)
\(\Rightarrow6A=7^{121}-7\)
\(\Rightarrow A=\dfrac{7^{121}-7}{6}\)
#Nguồn: Băng
Ta có: \(7^{100}+7^{99}+7^{98}\)
\(=7^{98}\left(1+7^1+7^2\right)\)
\(=7^{98}\times57\) chia hết cho \(57\)
Vậy \(\left(7^{100}+7^{99}+7^{98}\right)⋮57\left(đpcm\right)\)
A = 7100 + 799 + 798
A = 798.72 + 798.7 + 798
A = 798.( 72 + 7 + 1)
A = 798.57 chia hết cho 57
=> 7100 + 799 + 798 chia hết cho 57 (đpcm)