Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: \(\left(2x-1\right)^{20}=\left(2x-1\right)^{18}\)
\(\Leftrightarrow\left(2x-1\right)^{20}-\left(2x-1\right)^{18}=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\left[\left(2x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\cdot\left(2x-2\right)\cdot2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
b) Ta có: \(\left(2x-3\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
c) Ta có: \(\left(x-5\right)^2=\left(1-3x\right)^2\)
\(\Leftrightarrow\left(x-5\right)^2-\left(3x-1\right)^2=0\)
\(\Leftrightarrow\left(x-5-3x+1\right)\left(x-5+3x-1\right)=0\)
\(\Leftrightarrow\left(-2x-4\right)\left(4x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Bài 2:
a) \(15^{20}-15^{19}=15^{19}\left(15-1\right)=15^{19}\cdot14⋮14\)
b) \(3^{20}+3^{21}+3^{22}=3^{20}\left(1+3+3^2\right)=3^{20}\cdot13⋮13\)
c) \(3+3^2+3^3+...+3^{2007}\)
\(=3\left(1+3+3^2\right)+...+3^{2005}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{2005}\right)⋮13\)
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{19}\right)⋮7\)
Ban "ten to sieu dai yyyyyyyyyyyyyyyyyyyyyyy...." oi! ban dung khoe ten nua. ten dai koa dk j dau ma khoe.
A=(2+2mũ 2+2 mũ 3)+(2 mũ 4+2 mũ 5 + 2 mũ 6)+.....+(2 mũ 19 + 2 mũ 20 + 2 mũ 21)
A=14+2 mũ 3.(2+2 mũ 2+ 2 mũ 3)+.....+2 mũ 18(2+ 2 mũ 2 +2 mũ 3)
A=14x1+2 mũ 3x14+....+2 mũ 18 x 14
A=14(2 mũ 3 + ....+ 2 mũ 18)
vì 14: hết cho 14=>14(2 mũ 3+...+2 mũ 18): hết cho 14
=>A: hết cho 14
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
chia hết cho 3
A=(2 mũ 2+2 mũ 3)+(2 MŨ 4+2 mũ 5)+...+(2 mũ 19+2 mũ 20)
A=(2 mũ 2 +2 mũ 3)+2 mũ 2.(2 mũ 2+2 mũ 3)+...+2 mũ 17.(2 mũ 2+2 mũ 3)
A=12+2 mũ 2.12+...+2 mũ 17.12
A=12.(1+2 mũ 2+...+2 mũ 17)
vậy A chia hết cho 3
chia hết cho7
A=(2 mũ 2+2 mũ 3 +2 mũ 4).....(2 mũ 18+2 mũ 19 +2 mũ 20)
A=(2 mũ 2 +2 mũ 3 +2 mũ 4).....2 mũ 16.(2 mũ 2+2 mũ 3+2 mũ 4)
A=28.....2 mũ 16.28
28.(1+...+2 mũ 16)
vậy a .....cho 7
chia hất cho 15
A=(2 mũ 2+2 mũ 3+2 mũ 4+2 mũ 5).....(2 mũ 17+2 mũ 18+2 mũ 19+2 mũ 20)
A=(2 mũ 2+2 mũ 3+2 mũ 4+2 mũ 5).....2 mũ 15.(2 mũ 2+2 mũ 3+2 mũ 4+2 mũ 5)
A=60.....2 mũ 15.60
A=60.(1+...+2 mũ 15)
vậy a........cho 15.
CHÚC BẠN HOK TỐT!
\(A=2+2^2+2^3+...+2^{20}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{19}+2^{20}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{19}\right)⋮3\)
\(A=2+2^2+2^3+...+2^{20}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{17}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{17}\right)⋮5\)