Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta thấy: 6 đồng dư với 1(mod 5)
=>6100 đồng dư với 1100(mod 5)
=>6100 đồng dư với 1(mod 5)
=>6100-1 đồng dư với 1-1(mod 5)
=>6100-1 đồng dư với 0(mod 5)
=>6100-1 chia hết cho 5
b)Ta thấy:21 đồng dư với 1(mod 10)
=>2120 đồng dư với 120(mod 10)
=>2120 đồng dư với 1(mod 10)
11 đồng dư với 1(mod 10)
=>1110 đồng dư với 110(mod 10)
=>1110 đồng dư với 1(mod 10)
=>2120-1110 đồng dư với 1-1(mod 10)
=>2120-1110 đồng dư với 0(mod 10)
=>2120-1110 chia hết cho 10
=>2120-1110 chia hết cho 2 và 5
c)Ta thấy:10 đồng dư với 1(mod 3)
=>109 đồng dư với 19(mod 3)
=>109 đồng dư với 1(mod 3)
=>109+2 đồng dư với 1+2(mod 3)
=>109+2 đồng dư với 3(mod 3)
=>109+2 đồng dư với 0(mod 3)
=>109+2 chia hết cho 3
d)Ta thấy:10 đồng dư với 1(mod 9)
=>1010 đồng dư với 110(mod 9)
=>1010 đồng dư với 1(mod 9)
=>1010-1 đồng dư với 1-1(mod 9)
=>109-1 đồng dư với 0(mod 9)
=>109-1 chia hết cho 9
a) 6100 - 1 = (....6) - 1 = (....5) => hiệu đó chia hết cho 5
2110 - 1110 = (....1) - (....1) = (...0) => hiệu đó chia hết cho 2 và 5
109 + 2 = 100..2 . tổng các chữ số bằng 3 => số đó chia hết cho 3
1010 - 1 = 999...9 = 9.111....1 chia hết cho 9
Xét chữ số tận cùng của các lũy thừa trên đều là 1
\(\rightarrow1+11^1+11^2+11^3+...+11^9\)
\(=1+\overline{...1}+\overline{...1}+\overline{...1}+...+\overline{...1}\)
\(=11^0+11^1+11^2+...+11^9\)
Dãy trên có : 9-0+1=10 số hạng
-> Chữ số tận cùng của tổng là
10.1=10 ( c/s tận cùng là số 0 )
\(\Rightarrow B⋮5\)( theo dấu hiệu chia hết )
Xét chữ số tận cùng của các lũy thừa trên đều là 1
→1+111+112+113+...+119→1+111+112+113+...+119
=1+¯¯¯¯¯¯¯¯¯...1+¯¯¯¯¯¯¯¯¯...1+¯¯¯¯¯¯¯¯¯...1+...+¯¯¯¯¯¯¯¯¯...1=1+...1¯+...1¯+...1¯+...+...1¯
=110+111+112+...+119=110+111+112+...+119
Dãy trên có : 9-0+1=10 số hạng
-> Chữ số tận cùng của tổng là
10.1=10 ( c/s tận cùng là số 0 )
⇒B⋮5⇒B⋮5( theo dấu hiệu chia hết )
Xét chữ số tận cùng của các lũy thừa trên đều là 1
→1+111+112+113+...+119→1+111+112+113+...+119
=1+¯¯¯¯¯¯¯¯¯...1+¯¯¯¯¯¯¯¯¯...1+¯¯¯¯¯¯¯¯¯...1+...+¯¯¯¯¯¯¯¯¯...1=1+...1¯+...1¯+...1¯+...+...1¯
=110+111+112+...+119=110+111+112+...+119
Dãy trên có : 9-0+1=10 số hạng
-> Chữ số tận cùng của tổng là
10.1=10 ( c/s tận cùng là số 0 )
⇒B⋮5⇒B⋮5( theo dấu hiệu chia hết ) soo
bai1
(2+22)+(23+24)+...+(259+260)
=(2+22+23)+...+(258+259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=3.2+3.23+3.59chia hết cho 3 vì có số 3
=2.(1+2+22)+...+258.(1+2+23)
A=3.(2+23+25+...+259)=7.(2+24+27+...+255+258)chia hết cho 7 vì có số 7
Ai đó giải hộ mình phần b bài 2 với!!!!! Còn mỗi phần đấy là mình ngồi cắn bút...
Ta xét: Số tận cùng là 1 nâng lên lũy thừa luôn tận cùng là 1
Số các số hạng của dãy là:
(9 - 0) + 1 = 10 số
Chữ số tận cùng là: 10 x 1 = 10
Tận cùng là 0 chia hết cho 5
KL : Tổng chia hết cho 5
Ta thay: 91=9 ; 92=81 ; 93=729; 94=6561... Theo quy luat tren ta thay 9 mu chan thi co chu so tan cung la 1, mu le co chu so tan cung la 9. Vay 911 co chu so tan cung la 9, cong them 1 nen co chu so tan cung la 0, chia het cho 2 va 5. :)
mình hỏi cách trình bày cơ chứ mình biết thế rồi