Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì nếu ta lấy 74.n lần lượt các số 1;2;3;4;... đều có chữ số tận cùng là 1 rồi ta lấy số đó cộng với 4 thì sẽ ra số có chữ số tận cùng là 5 nên số 74.n+4 chia hết cho 5
7^4n=(7^2)^2n=49^2n=(49^2)^n=(...1)^n=...1
=>7^4n+4=...1+4=...5 chia hết cho 5.
Thực ra thì mấy câu này cx tương tự như nhau nên mk chỉ lm 1 câu, còn lại b tự lm tiếp nhé!
a/ \(A=2+2^2+2^3+.........+2^{2010}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+.......+\left(2^{2009}+2^{2010}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+.......+2^{2009}\left(1+2\right)\)
\(=2.3+2^3.3+.......+2^{2009}.3\)
\(=3\left(2+2^3+.......+2^{2009}\right)⋮3\left(đpcm\right)\)
\(A=2+2^2+2^3+........+2^{2010}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+......+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+......+2^{2008}\left(1+2+2^2\right)\)
\(=2.7+2^4.7+........+2^{2008}.7\)
\(=7\left(2+2^4+.......+2^{2008}\right)⋮7\left(đpcm\right)\)
Cảm ơn bạn nhiều
Nếu ko có bạn thì mai mình ko thi đc học kì đc đâu!
`A = 1 + 2 + 2^2 + 2^3 + ... + 2^41` $\\$
`2A = 2 + 2^2 + 2^3 + ... + 2^42`$\\$
`2A - A = (2 + 2^2 + 2^3 + ... + 2^42) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$
`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^41`$\\$
`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^41 - 2^41) + 2^42`$\\$
`2A - A = - 1 + 2^42`$\\$
hay `A = -1 + 2^42`$\\$
`A = 1 + 2 + 2^2 + 2^3 + ... + 2^{41}` $\\$
`2A = 2 + 2^2 + 2^3 + ... + 2^{42}`$\\$
`2A - A = (2 + 2^2 + 2^3 + ... + 2^{42}) - (1 + 2 + 2^2 + 2^3 + ... + 2^{41})` $\\$
`2A - A = 2 + 2^2 + 2^3 + ... + 2^{42} - 1 - 2 - 2^2 - 2^3 - ... - 2^{41}`$\\$
`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^{41} - 2^{41}) + 2^42`$\\$
`2A - A = - 1 + 2^{42}`$\\$
hay `A = -1 + 2^{42}`$\\$
Đề sai rồi bạn ơi. Bạn thử thay n=1 đi