Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
$10\equiv -1\pmod {11}$
$\Rightarrow 10^{2022}\equiv (-1)^{2022}\equiv 1\pmod {11}$
$\Rightarrow A=10^{2022}-1\equiv 1-1\equiv 0\pmod {11}$
Vậy $A\vdots 11$
ok
A= 10^2022-1
Ta có thể thấy 10^2022=100000000...........0000000000
10000000.......0000000000-1 thì lúc nnày tổng bằng
9999999999999999........................999999999999999999999
mà 99999999999999999999999....................9999999999999999999chia hết cho 11 nên tổng này chia hết cho 11
Ta có: \(43^{43}=43^{40}.43^3\)
Lại có: 4340tận cùng 1; 433 tận cùng 7
=>4343tận cùng 7(*)
1717=1716.17
Mà 1716tận cùng 1
=>1717tận cùng 7(**)
Từ (*) và (**) suy ra 4343-1717tận cùng 0
\(\Rightarrow43^{43}-17^{17}⋮10\)
\(P=3^{10}+3^{11}+3^{12}\)
\(=3^{10}\cdot\left(1+3+3^2\right)\)
\(=3^{10}\cdot13\)
Vì \(13⋮13\) nên \(3^{10}\cdot13⋮13\)
hay \(P⋮13\)
Vậy ...
#\(Toru\)
P = 3¹⁰ + 3¹¹ + 3¹²
= 3¹⁰.(1 + 3 + 3²)
= 3¹⁰ . 13 ⋮ 13
Vậy P ⋮ 13
a) \(A=7^{13}+7^{14}+7^{15}+7^{16}+...+7^{100}\)
\(A=\left(7^{13}+7^{14}\right)+\left(7^{15}+7^{16}\right)+...+\left(7^{99}+7^{100}\right)\)
\(A=7^{13}\left(1+7\right)+7^{15}\left(1+7\right)+...+7^{99}\left(1+7\right)\)
\(A=7^{13}.8+7^{15}.8+...+7^{99}.8\)
\(A=8.\left(7^{13}+7^{15}+...+7^{99}\right)\)
⇒ \(A⋮8\)
Vậy A chia hết cho 8 (đpcm)
a) A = 7¹³ + 7¹⁴ + 7¹⁵ + 7¹⁶ + ... + 7⁹⁹ + 7¹⁰⁰
= (7¹³ + 7¹⁴) + (7¹⁵ + 7¹⁶) + ... + (7⁹⁹ + 7¹⁰⁰)
= 7¹³.(1 + 7) + 7¹⁵.(1 + 7) + ... + 7⁹⁹.(1 + 7)
= 7¹³.8 + 7¹⁵.8 + ... + 7⁹⁹.8
= 8.(7¹³ + 7¹⁵ + ... + 7⁹⁹) ⋮ 8
Vậy A ⋮ 8
b) B = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰⁰
= 2 + 2² + 2³ + 2⁴ + 2⁵ + 2⁶ + 2⁷ + 2⁸ + ... + 2¹⁹⁷ + 2¹⁹⁸ + 2¹⁹⁹ + 2²⁰⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁹⁷ + 2¹⁹⁸ + 2¹⁹⁹ + 2²⁰⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + 2¹⁹⁶.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + ... + 2¹⁹⁶.30
= 30.(1 + 2⁴ + ... + 2⁹⁶)
= 5.6.(1 + 2⁴ + ... + 2¹⁹⁶) ⋮ 5
Vậy B ⋮ 5
\(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}=2\left(1+2^2+2^3+2^4\right)+...+2^{96}\left(1+2^2+2^3+2^4\right)=2.31+2^6.31+...+2^{96}.31=31\left(2+2^6+...+2^{96}\right)⋮31\)
Đặt A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²²
= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2²⁰²⁰ + 2²⁰²¹ + 2²⁰²²)
= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2²⁰²⁰.(1 + 2 + 2²)
= 2.7 + 2⁴.7 + ... + 2²⁰²⁰.7
= 7.(2 + 2⁴ + ... + 2²⁰²⁰) ⋮ 7
Vậy A ⋮ 7
a; a - b ⋮ 6
a - b + 12b ⋮ 6
a + 11b ⋮ 6 (đpcm)
b; a - b ⋮ 6
a - b - 12a ⋮ 6
-11a - b ⋮ 6
-(11a + b) ⋮ 6
11a + b ⋮ 6 (đpcm)
\(714-713+712\)
\(=\left(713+1\right)-713+\left(713-1\right)\)
\(=713+1-713+713-1\)
\(=713\)
Mà: \(713⋮̸43\)
nên \(714-713+712⋮̸43\) (mâu thuẫn với đề bài)
Bạn xem lại đề bài nhé!