K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2016

a) Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)

=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d

=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d

=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d

=> (6n + 15) - (6n + 14) chia hết cho d

=> 6n + 15 - 6n - 14 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(2n+5; 3n+7) = 1

=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)

Câu b lm tương tự

14 tháng 7 2016

 Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)

=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d

=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d

=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d

=> (6n + 15) - (6n + 14) chia hết cho d

=> 6n + 15 - 6n - 14 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(2n+5; 3n+7) = 1

=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)

Câu b lm tương tự

30 tháng 10 2016

bạn chờ mình chút

30 tháng 10 2016

a) Gọi d là UCLN của 3n+4 và 2n+3, suy ra: 
3n+4 chia hết cho d ; 2n+3 chia hết cho d 
+ Ta có : 2.(3n+4) chia hết cho d ( mình kí hiệu là dấu : nha )
=> 6n+8 : d      (1)
Lại có : 3.(2n+3) :d 
=> 6n+9 : d      (2)
+ Từ 1 và 2 => 6n+9 - 6n - 8 :d

=> 1 : d

=> 3n+4 và 2n+3 nguyên tố cùng nhau
Phần b tương tự, kk cho mìnhh nha

5 tháng 1 2016

Ta có : k là ƯCLN của 7n + 10 và 5n + 7 
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k 
Hay 5(7n + 10 ) và 7(5n + 7 ) 
      35n + 50 và 35n + 49 chia hết cho k 
=> ĐPCM 

Hai bài kia bạn làm tương tư nhé , chúc may mắn 

4 tháng 11 2023

Ko hiểu ????

4 tháng 11 2023

a)nếu 2n+1 và 3n+2 là các số  nguyên tố cùng nhau thì chúng phải có ƯCLN =1 

giả sử ƯCLN(2n+1,3n+2)=d

=>2n+1 chia hết cho d ,  3n+2 chia hết cho d 

=>3(2n+1)chia hết cho d , 2(3n+2)chia hết cho d

=>6n+3 chia hết cho d, 6n +4 chia hết cho d

=>(6n+4)  - (6n+3) chia hết cho d

=>6n+4-6n-3=1 chia hết cho d

=>d=1

vậy ƯCLN(2n+1,3n+2)=1 (đpcm)

đpcm là điều phải chứng minh

29 tháng 8 2021

Giúp mình với mn

 

29 tháng 8 2021

\(a,d=ƯCLN\left(5n+2;2n+1\right)\\ \Rightarrow2\left(5n+2\right)⋮d;5\left(2n+1\right)⋮d\\ \Rightarrow\left[5\left(2n+1\right)-2\left(5n+2\right)\right]⋮d\\ \Rightarrow-1⋮d\Rightarrow d=1\)

Suy ra ĐPCM

 

Cmtt với c,d

 

31 tháng 7 2015

Gọi ước chung của 2n+1 và 6n+5 là d(với d là số tự nhiên khác 0 ko cần d là số nguyên), ta có:

2n+1 chia hết cho d=> 6n+3 chia hết cho d

6n+5 chia hết cho d

=> (6n+5)-(6n+3)=2 chia hết cho d=> d\(\in\) {1;2}

Vì 2n+1 không chia hết cho 2 nên d=1

=> ước chung của 2n+1 và 6n+5 là 1=> UCLN(2n+1;6n+5)=1=> 2n+1 và 6n+5 nguyên tố cùng nhau với mọi n thuộc Z

b) gọi ước chung của 3n+2 và 5n+3 là d(với d là số tự nhiên khác 0).TA có:

3n+2 chia hết cho d=> 15n+10 chia hết cho d

5n+3 chia hết cho d=> 15n+9 chia hết cho d

=> (15n+10)-(15n+9)=1 chia hết cho d=> d=1

=> UC(3n+2;5n+3)=1=> UCLN(3n+2;5n+3)=1

=> 3n+2 và 5n+3 nguyên tố cùng nhau với mọi n thuộc Z

Dễ mà 

Ta có ƯC( 2n+1 và 3n+1) là d

=> 2n+1 và 3n+1 chia hết cho d

=> 3(2n+1) chia hết cho d

=> 2(3n+1) chia hết cho d

=> 6n+3và 6n+2 chia hết cho d

=> 6n+3 - 6n+2 chia hết cho d

=> 1 chia hết cho d

=> d=1

=> ƯC( 2n+1 và 3n+1)=1

=> đpcm 

bài này rất hóc búa!

vào câu hỏi tương tự nha!

a) Gọi UCLN \(3n+7\)và \(5n+12\)là \(d\)

\(\Rightarrow\left(3n+7\right)⋮d\)và \(\left(5n+12\right)⋮d\)

Xét 2 biểu thức :

\(\Rightarrow\left(3n+7\right).5⋮d\Rightarrow15n+35⋮d\)

\(\Rightarrow\left(5n+12\right).3⋮d\Rightarrow15n+36⋮d\)

\(\Rightarrow\left(15n+37-15n-36\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow3n+7;5n+12\)nguyên tố cùng nhau.