Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
......................?
mik ko biết
mong bn thông cảm
nha ................
Lời giải:
Bổ sung điều kiện $n$ là số tự nhiên khác $0$
Gọi biểu thức trên là $A$. Ta có:
\(7\equiv -1\pmod 4\Rightarrow 7^{2^{4n+1}}\equiv (-1)^{2^{4n+1}}\equiv 1\pmod 4\)
\(4^{3^{4n+1}}\equiv 0\pmod 4\)
\(\Rightarrow A\equiv 1+0-65=-64\equiv 0\pmod 4\)
Vậy $A\vdots 4(*)$
Mặt khác:
Với $n$ là số tự nhiên khác $0$ thì $2^{4n+1}$ chia hết cho $4$
$\Rightarrow 7^{2^{4n+1}}=7^{4k}=(7^4)^k\equiv 1\pmod {25}$
$3^{4n+1}=3.81^n\equiv 3\pmod {10}$
$\Rightarrow 3^{4n+1}=10t+3$
$\Rightarrow 4^{3^{4n+1}}=4^{10t+3}=64.(4^{10})^t\equiv 64\pmod {25}$
Do đó:
$A\equiv 1+64-65\equiv 0\pmod {25}$ hay $A\vdots 25(**)$
Từ $(*); (**)\Rightarrow A\equiv 0\pmod {100}$
Ta có đpcm.
Bạn có thể gõ lại công thức rõ hơn được không?
Bài 3:
a) Ta có: \(\left(3n-1\right)^2-4\)
\(=\left(3n-1-2\right)\left(3n-1+2\right)\)
\(=\left(3n-3\right)\left(3n+1\right)\)
\(=3\cdot\left(n-1\right)\cdot\left(3n+1\right)⋮3\forall n\in N\)(đpcm)
b) Ta có: \(100-\left(7n+3\right)^2\)
\(=\left[10-\left(7n+3\right)\right]\left[10+\left(7n+3\right)\right]\)
\(=\left(10-7n-3\right)\left(10+7n+3\right)\)
\(=\left(7-7n\right)\left(13+7n\right)\)
\(=7\cdot\left(1-n\right)\cdot\left(13+7n\right)⋮7\forall n\in N\)(đpcm)
c) Ta có: \(\left(3n+1\right)^2-25\)
\(=\left(3n+1-5\right)\left(3n+1+5\right)\)
\(=\left(3n-4\right)\left(3n+6\right)\)
\(=3\cdot\left(3n-4\right)\cdot\left(n+2\right)⋮3\forall n\in N\)(đpcm)
d) Ta có: \(\left(4n+1\right)^2-9\)
\(=\left(4n+1-3\right)\left(4n+1+3\right)\)
\(=\left(4n-2\right)\left(4n+4\right)\)
\(=2\cdot\left(2n-1\right)\cdot4\cdot\left(n+1\right)\)
\(=8\cdot\left(2n-1\right)\cdot\left(n+1\right)⋮8\forall n\in N\)(đpcm)
Ta có:
\(n^5-5n^3+4n=n\left(n^4-5n^2+4\right)\)
\(=n\left(n^4-n^2-4n^2+4\right)\)
\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-1\right)\right]\)
\(=n\left(n^2-1\right)\left(n^2-4\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)
\(\Rightarrow\)\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Vì \(n-2;n-1;;n;n+1;n+2\) là tích của 5 số nguyên liên tiếp chia hết cho 3;5;8
Mà ƯC\(_{\left(3;5;8\right)}\)=1
\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) chia hết cho:
3.5.8=120(đpcm)
a2+b2+c2+3=2a+2b+2c
=>a2-2a+1+b2-2b+1+c2-2c+1=0 (chuyển vế và tách 3=1+1+1)
<=>(a-1)2+(b-1)2+(c-1)2=0 (1)
vì (a-1)2>=0
(b-1)2 >=0
(c-1)2>=0
do đó (a-1)2+(b-1)2+(c-1)2>=0 với mọi a,b,c (2)
từ (1) và (2)=>a-1=b-1=c-1=0
=>a=b=c=1 (dpcm)
Ta có (a - b)2 >=0
=) a2 + b2 >= 2ab
Cộng 2 vế BĐT cho a2 + b2 ta được
a2 + b2 + a2 + b2 >= a2 + b2 +2ab
2( a2 + b2 ) >= ( a + b )2
2( a2 + b2 ) >= 1
a2 + b2 >= 1/2
Dấu '=' XRK : a=b