Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
Nếu n=2k (k thuộc N) thì n+5=2k+5 chia hết cho 2
Nếu n=2k+1 (k thuộc N) thì n+4 =2k+5 chia hết cho 2
Vậy (n+4)(n+5) chia hết cho 2
Câu a
Nếu n=2k thì n+4 = 2k+4 chia hết cho 2 => (n+4)(n+5) chia hết cho 2
Nếu n=2k+1 thì n+5=2k+5+1=2k+6 chia hết cho 2=> (n+4)(n+5) chia hết cho hai
Vậy (n+4)(n+5) chia hết cho 2
Câu b
Ta có n+2012 và n+2013 là hai số tự nhiên liên tiếp
Gọi ƯCLN(n+2012; n+2013)=d
Vì ƯCLN(n+2012;n+2013)=d
=> n+2012 chia hết cho d, n+2013 chia hết cho d
Mà n+2013-n+2012=1=> d=1
Vậy n+2012 và n+2013 là 2 số nguyên tố cùng nhau
a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)
60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)
b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.
Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.
c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)
2100 chia hết cho 15 => 2100b chia hết cho 15 (2)
Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)
d,Ta có : n^2+n+1=nx(n+1)+1
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.
Mình xin trả lời ngắn gọn hơn! a)60 chia hết cho 15=> 60n chia hết cho 15 15 chia hết cho 15 =>60n+15 chia hết cho 15. 60 chia hết cho 30=>60n chia hết cho 30 15 không chia hết cho 30 =>60n+15 không chia hết cho 30 b)Gọi số tự nhiên đó là A Giả sử A thỏa mãn cả hai điều kiện => A= 15.x+6 & = 9.y+1 Nếu A = 15x +6 => A chia hết cho 3 Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=> c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15. => 1500a+2100b chia hết cho 15. d) A chia hết cho 2;5 => A chia hết cho 10. => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.) Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ) Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ) => A không chia hết cho 2;5
Gọi ƯCLN(a; a.b+4) là d. Ta có:
a chia hết cho d => a.b chia hết cho d
a.b+4 chai hết cho d
=> a.b+4-a.b chia hết cho d
=> 4 chia hết cho d
=> d thuộc Ư(4)
Mà a là số lẻ
=> d khác 2; -2; 4; -4
=> d ∈{1; -1}
=> d = 1
=> ƯCLN(a; a.b+4) = 1
=> a và a.b+4 nguyên tố cùng nhau (đpcm)
Gọi d là ước chung lớn nhất của a và ab + 4
\(\Rightarrow\hept{\begin{cases}a⋮d\\ab+4⋮d\end{cases}}\Rightarrow\hept{\begin{cases}ab⋮d\\ab+4⋮d\end{cases}\Rightarrow}4⋮d\)
Vậy d = 1 hoặc d = 2
Nếu d = 1 thì a và ab + 4 là hai số nguyên tố cùng nhau
Nếu d = 2 thì a chia hết cho 2 nên a là một số tự nhiên chẵn => vô lý
đpcm
giúp mình nha chiều nay mình phải nộp cho thầy giáo rồi. 3 bài minh vừa mới gửi đó.
chúc các bạn có ngày cá tháng tư vui vẻ!
Sửa: \(495a+1035b⋮45,\forall a;b\)
Ta có \(495a+1035b=45\left(11a+23b\right)⋮45\)