Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{43\cdot46}=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{43}-\frac{1}{46}=1-\frac{1}{46}< 1\)
\(\left(\frac{3}{a\cdot\left(a+3\right)}=\frac{a+3-3}{a\cdot\left(a+3\right)}=\frac{1}{a}-\frac{1}{a+3}\right)\)
\(S=\frac{3}{1\times4}+\frac{3}{4\times7}+...+\frac{3}{43\times46}\)
\(3S=3-\frac{3}{4}+\frac{3}{4}-\frac{3}{7}+...+\frac{3}{43}-\frac{3}{46}\)
\(3S=3-\frac{3}{46}\)
\(3S=\frac{135}{46}\)
\(S=\frac{45}{46}< 1\)
Vậy ra có điều phải chứng minh
A=1/2^2+1/3^2+....+1/1009^2
2A=2/2^2+2/3^2+...+2/1009^2
Ta có : (x-1).(x+1)=(x-1).x+x-1=x^2-x+x-1=x^2-1<x^2
2A<2/1.3+2/3.5+2/5.7+...+2/1008.10010
2A<1-1/3+1/3-1/5+...+1/1008-1/1010
2A<1-1/1010
2A<1009/1010<1<3/2
2A<3/2
A<3/4
ĐPCM
Nhớ cho mình nha!
S=(1/101+1/102+...+1/110)+(1+111+...+1/120)+(1/121+...+1/130)
=>1/110.10+1/120.10+1/130.10=1/11+1/12+1/13>1/12+2/12=1/4 (dễ có :
1/11+1/13>2/12
=>S>1/4(1)
+)S=1/101+1/130)+(1/102+1/129)+......+(1/115+1/116)(có 15 cặp
=231/101.130+231/102.129+...231/115.116=231
(1/101.130+1/102.129+...+1/115.116)
Ta có nhận xét tích 101 .130 có giá trị nhỏ nhất ,thật vậy :
xét 102.129=(101+1).(130-1)=101.130-101+130-1=101.130+28>101.130
Tương tự các cặp cong lại ,ta có : 1/101.130+1/129.102+....+1/115.116<1/101.130.15
=>S=231.1/101.130.15=693/2626<91/330
từ (1)(2)=>đpcm