Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(2^1+2^2+2^3+2^4+2^5+2^6)+................+(2^2005+2^2006+2^2007+2^2008+2^2009+2^2010)
A=2^1(1+2+2^2+2^3+2^4+2^5)+...................+2^2005(1+2+2^2+2^3+2^4+2^5)
A=2.63+......................+2^2005.63
A=63.(2+..............................+2^2005)
VÌ 63 CHIA HẾT CHO 3 VÀ 7 VẬY A CHIA HẾT CHO 3 VÀ 7.
chúc cậu học tốt!
A = 31 + 32 + 33 + .....+ 32010
A = ( 3 + 32 + 33 ) + .....+ ( 32008 + 32009 + 32010 )
A = 3 x ( 1 + 3 + 32 ) + .....+ 32008 x ( 1 + 3 + 32 )
A = 3 x 13 + ..... + 32008 x 13
A = 13 x ( 3 + ... + 32008 )
Vậy A \(⋮\)cho 13
\(A=3^1+3^2+3^3+...+3^{2010}\)
\(\Rightarrow A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\)
\(\Rightarrow A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)
\(\Rightarrow A=13.\left(3+3^4+3^7+...+3^{2008}\right)⋮13\) ( đpcm )
\(\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+....+\left(3^{2008}+3^{2009}+3^{2010}\right)=\)
\(3\left(1+3^1+3^2\right)+3^4\left(1+3^1+3^2\right)+.....+3^{2008}\left(1+3^1+3^2\right)=\)
\(13\left(3+3^4+...+3^{2008}\right)\)chia hết cho 13 (Đề đúng là \(3^{2010}\)
4n+3 chia hết cho 2n+1 (1)
Mà 2(2n+1) chia hết cho 2n+1 \(\Rightarrow\)4n+2 chia hết cho 2n+1 (2)
Từ (1)và(2) \(\Rightarrow\)(4n+3) - (4n+2) chia hết cho 2n+1\(\Rightarrow\)1 chia hết cho 2n+1
\(\Rightarrow\)2n+1 \(\in\)Ư(1) = {1}
Vậy n \(\in\){0;-1}
a) A=2+2^2+2^3+2^4+...+2^2010
=(2+2^2+2^3)+...+(2^2008+2^2009+2^2010)
=2(1+2+2^2)+...+2^2008(1+2+2^2)
=7(2+...+2^2008) chia hết cho 7
trường hợp chia hết cho 3 cách làm tương đối giống
b) D=7+7^2+7^3+7^4+...+7^2010
=(7+7^2+7^3)+...+(7^2008+7^2009+7^2010)
=7(1+7+7^2)+...+7^2008(1+7+7^2)
=57(7+...+7^2008) chia hết cho 57
trường hợp cho hết cho 8 cách làm tương tự
Nhom 2 so => chia het cho 4
nhom 3 so => chia het cho 13